
Browser Polygraph: Efficient Deployment of Coarse-Grained
Browser Fingerprints for Web-Scale Detection of Fraud Browsers

Faezeh Kalantari
faezeh.kalantari@asu.edu
Arizona State University

Tempe, AZ, USA

Mehrnoosh Zaeifi
mzaeifi@asu.edu

Arizona State University
Tempe, AZ, USA

Yeganeh Safaei
ysafaeis@asu.edu

Arizona State University
Tempe, AZ, USA

Marzieh Bitaab
mbitaab@asu.edu

Arizona State University
Tempe, AZ, USA

Adam Oest
contact@adamoest.com

Amazon
Tempe, AZ, USA

Gianluca Stringhini
gian@bu.edu

Boston University
Boston, MA, USA

Yan Shoshitaishvili
yans@asu.edu

Arizona State University
Tempe, AZ, USA

Adam Doupé
doupe@asu.edu

Arizona State University
Tempe, AZ, USA

Abstract

In this paper, we address the prevalent issue of account takeover
(ATO) fraud, which significantly impacts businesses through stolen
user information. Websites have adopted risk-based authentica-
tion, incorporating browser fingerprinting techniques to counteract
this threat. However, attackers have adapted by using anti-detect
browsers, referred to as fraud browsers, to spoof user information
effectively. While traditional fingerprinting methods are capable of
identifying fraud browsers, they encounter scalability and perfor-
mance challenges in risk-based systems. To address these issues,
we developed Browser Polygraph, an ML-based tool that applies
coarse-grained privacy-preserving fingerprints to assess browser
authenticity and assigns risk factors to suspicious sessions. Coarse-
grained fingerprints, by design, cannot be used for user tracking but
only for fraud detection purposes. Deployed at a major financial
company, Browser Polygraph has flagged suspicious sessions,
enabling more targeted identification of potential fraud, thus en-
hancing the company’s ability to tackle ATO attempts.

CCS Concepts

• Security and privacy→ Browser security.

Keywords

Coarse-grained browser fingerprinting, Fraud browsers, Fraud de-
tection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’24, November 4–6, 2024, Madrid, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0592-2/24/11
https://doi.org/10.1145/3646547.3688455

ACM Reference Format:

Faezeh Kalantari, Mehrnoosh Zaeifi, Yeganeh Safaei, Marzieh Bitaab, Adam
Oest, Gianluca Stringhini, Yan Shoshitaishvili, and Adam Doupé. 2024.
Browser Polygraph: Efficient Deployment of Coarse-Grained Browser
Fingerprints for Web-Scale Detection of Fraud Browsers. In Proceedings of
the 2024 ACM Internet Measurement Conference (IMC ’24), November 4–6,
2024, Madrid, Spain. ACM, New York, NY, USA, 23 pages. https://doi.org/10.
1145/3646547.3688455

1 Introduction

The war between fraudsters and website operators has been ever-
present since the first login form was conceived. Fraudsters use any
means necessary to steal cookies or login information from victims,
and then use that stolen information to authenticate to the website
as the victim [38, 62, 68]. Such attacks are called account takeover
fraud or ATO [34]. ATOs cause significant financial damage—the
FBI reports that victims reported 2.7 billion USD in losses due to
Business Email Compromise (which is a fraud that is just a subset
of ATO) in the year 2022 alone [16].

One way that website operators have attempted to protect users
is through risk-based authentication—analyzing available informa-
tion about the login attempt to assess the risk of it being an in-
progress ATO attempt. One such technique is the matching of the
user’s current browser against prior browsers used by that account.
Freeman et al. [17] used the user-agent to identify the browser,
and follow-up work has leveraged the burgeoning field of browser
fingerprinting (originally identified as a privacy threat to users, but,
in this case, utilized “for good”) [9, 13, 26, 45].

However, recent work shows that attackers can easily steal and
replay browser fingerprints [29, 31]. In fact, criminals have turned
this into a type of cybercrime-as-a-service [10]: When account
information is stolen, the attacker also collects a browser profile.
Underground marketplaces such as the Genesis Market (through
which over 80 million stolen profiles for various services of over
2 million potentials were traded before the site was shut down
by the FBI in 2023 [41]) facilitate the sale of these profiles on a
massive scale. After acquiring stolen profiles, fraudsters load them

https://doi.org/10.1145/3646547.3688455
https://doi.org/10.1145/3646547.3688455
https://doi.org/10.1145/3646547.3688455


IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

into specially-customizable web browser variants, so-called “anti-
detect browsers” ostensibly created for privacy purposes, to bypass
risk-based authentication and commit ATO fraud. In this paper,
we refer to these browsers as fraud browsers. Notably, financial
institutions are one of the most impacted sectors, facing numerous
cases of fraud perpetrated through fraud browsers [3].

Fine-grained browser fingerprinting offers a solution to detect-
ing fraud browsers through its user tracking techniques. These
techniques generate detailed fingerprints using advanced browser
fingerprinting techniques such as WebGL [11, 35], canvas [1, 15]
and even CPU timing [43], which can then be compared with pre-
viously established user fingerprints to identify potential fraud.
Nevertheless, through our consultation with a leading financial
institution, herein referred to as FinOrg1, we found that existing
fine-grained fingerprinting methods face deployment challenges
at FinOrg due to stringent constraints on fingerprint extraction
time and data size. Current practices for thwarting fraud browsers
predominantly rely on manual effort (studied by Azad et al. [7]) and
may become obsolete with the release of new browser software.

Addressing these issues, our paper presents a prototype for the
analysis of efficient coarse-grained fingerprints within large-scale
Web traffic, aimed at fraud browsers detection. By coarse-grained
browser fingerprints, we refer to a simplified and less detailed set
of browser fingerprinting features designed specifically for fraud
detection, optimized to meet resource and performance constraints
(as defined by FinOrg). These fingerprints, in our paper, target
discrepancies in the implementation of JavaScript APIs across dif-
ferent browsers. This novel, data-driven, and privacy-preserving
strategy focuses on training a machine learning model via mini-
mal coarse-grained features from FinOrg users. Our method aims
to rigorously validate the authenticity of a browser session’s re-
ported user-agent string, which fraudsters typically manipulate
to match their target’s user-agent. We extend existing research in
coarse-grained fingerprinting [6, 65], which are typically used to
infringe user privacy, and instead apply our extended techniques
to large-scale Web data, with a particular focus on privacy, coarse
granularity, efficacy, and continuous detection adaptability.

In our prototype, we create a clustering model, called Browser
Polygraph, that operates on privacy-preserving and coarse-grained
fingerprints and determines a risk factor score that represents di-
vergences between the actual identity of the observed browser and
its identity as claimed by its user-agent. Browser Polygraph
is tailored to meet the performance demands of large, real-world,
financial companies, focusing on efficient and effective browser fin-
gerprinting without delving into expensive, fine-grained analysis.

We deployed Browser Polygraph in production at FinOrg for
4.5months, observing over 205,000 user sessions. Of these,Browser
Polygraph identified 897 suspicious sessions, 2% of which were
used in an ATO attack within 72 hours (compared an ATO preva-
lence of 0.43% across all sessions). Of the sessions that Browser
Polygraph identified as highly risky, 5.83% were used in an ATO
within 72 hours.

We designed Browser Polygraph with concept drift in mind,
and built in mechanisms to detect when retraining is needed (e.g.,

1FinOrg is a major financial company that provides financial services through internet
platforms.

due to new browser versions). We experimentally show that re-
training was needed approximately after three months. This dura-
tion may vary depending on the specific features of new browser
releases, but it can be automatically triggered by Browser Poly-
graph’s drift detection module, increasing the resiliency of our
approach in the cat-and-mouse game between attackers and defend-
ers. Furthermore, in a separate evaluation, we assessed Browser
Polygraph’s efficacy in detecting a subset of fraudulent browser
fingerprints generated by fraud browsers, demonstrating its poten-
tial in identifying these threats. In essence, Browser Polygraph is
a preliminary prototype that represents a significant step forward
in the automatic generation of coarse-grained browser fingerprints
and their deployment in risk-based authentication systems. Our ap-
proach can be further enhanced by future advances in fine-grained
browser fingerprinting, ensuring continued efficacy in the face of
evasion by cyber criminals.

In summary, the contributions of this paper are as follows:

• We propose a new privacy-preserving idea of detecting lying
browsers while maintaining the performance characteris-
tics necessary for real-world deployment at FinOrg using
efficient coarse-grained fingerprints.
• We leverage this idea into a clusteringmodel, calledBrowser
Polygraph, that outputs risk factor of suspicious user
sessions, which can be used as part of risk-based authentica-
tion.
• We deployed Browser Polygraph at a major financial com-
pany FinOrg, where we demonstrated its effectiveness at
detecting real-world fraud.
• We demonstrated Browser Polygraph’s effectiveness (in an
independent evaluation) in detecting a subset of fraudulent
browser fingerprints created by fraud browsers.

2 Background

This paper builds on past research in browser fingerprinting, repur-
posing it to detect fraud browsers. In this section, we discuss related
work in both areas and present the results of our investigation on
the behaviors of fraud browsers.

2.1 Browser Fingerprinting

Browser fingerprinting research extensively probes the attributes
and features of browsers that can divulge details about a user’s
underlying system—both software and hardware. These attributes
and features can be used to uniquely identify the user’s browser.
JavaScript accessible attributes such as the user-agent [14], geolo-
cation, timezone, screen resolution [8], and available fonts [2, 14, 15]
have been classic sources of fingerprintable data. Recent advance-
ments have added depth to this field by exploring more intricate pa-
rameters; for instance, APIs such as Canvas [1, 15], WebGL [11, 35],
and WebRTC [15] have been explored. Beyond these, even nuanced
elements such as AudioContext [15], CSS properties [47], specific
JavaScript objects such as navigator and screen [36], Crypto
API [43], the list of extensions and plugins [27, 28, 46, 63], and
HTTP headers [27] serve as potential fingerprinting vectors.



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

2.2 Fraud Browsers

Privacy concerns have given rise to specialized browsers, commonly
referred to as anti-detect browsers, designed to obscure user identity.
These browsers allow a user to distort or hide a browser’s iden-
tifying information, such as IP addresses, user-agents, JavaScript
attributes, etc. However, these browsers are being actively misused
by criminals—not for privacy reasons, but for conducting fraudulent
activities. Therefore, we use the term fraud browsers in this paper
to describe these browsers. Fraud browsers allow criminals to load
profiles of the victim, typically stolen by phishing kits [62], and then
later sold on online marketplaces [10]. Some marketplaces even
have their own fraud browsers, such as the now-defunct Genesis
Market.

Since addressing the challenges presented by fraud browsers
is a vital element of our research, we examined several notable
fraud browsers employed today. This examination revealed a com-
monality in their adeptness at customizing, randomizing, or con-
cealing typical fingerprinting attributes, such as Timezone, Lan-
guage, Screen Resolution,WebRTC,WebGL, Canvas, Audio Context,
Geo Location, etc. Specifically, we analyzed browsers like, Clon-
Browser [53], AntBrowser [50], Incogniton [56], GoLogin [55], Octo
Browser [57] Linken Sphere [61], Sphere [58], VMLogin [59] CheB
rowser [51], and AdsPower [48], noting usage of some of those in
real-world fraud.

The uniqueness of each fraud browser lies in its functionality.
For instance, Linken Sphere offers extensive customization, includ-
ing browser or OS choice, fingerprint profiles, and cookie import
capabilities. While offering fewer browser and OS customization
options, Che Browser provides a unique service that allows users to
purchase profiles for various Chrome versions. Incogniton and Octo
Browser, both Chrome-based, support user profiles and cookie im-
ports. GoLogin provides a wide range of operating system options
and the capability to manage from 100 to thousands of user profiles.
Our focus diverged from these software’s extensive capabilities
towards a more targeted approach. We concentrated on uncover-
ing inconsistencies within the simplest and most direct JavaScript
attributes rather than comparing their sophisticated spoofing or
randomization techniques (details in Section 6).

2.3 Fraud Browsers’ Behavior

We further delved into the behavior of fraud browsers to under-
stand how they operate so that we could create strategies to detect
them. We installed several fraud browsers (noted in Table 1) on a
Windows machine and analyzed how their browser fingerprints
change with altering the user-agent. This led to the categorization
of these browsers into three primary strategies, with a fourth cate-
gory identified for fraudulent use of legitimate browsers in spoofed
environments:

Category 1: Browsers such as Linken Sphere and ClonBrowser
which exhibit browser fingerprints that do not match any legiti-
mate browser’s fingerprint.
Category 2: Browsers in this category maintain a browser fin-
gerprint that matches a legitimate browser fingerprint, but the
fingerprint does not change when modifying the user-agent
string.

Table 1: Fraud browsers categorized based on definitions in

Section 2.3. Release dates with a preceding ~ are approxima-

tions based on related version release dates or the date of

experimentation (Rel. = Release).

Browser Rel. Date Category New Rel.?

Linken Sphere-8.93 April 2022 1 ✗

ClonBrowser-4.6.6 ~May 2023 1 ✓

Incogniton-3.2.7.7 ~May 2023 2 ✓

Gologin-3.2.19 May 2023 2 ✓

CheBrowser-0.3.38 ~May 2023 2 ✓

VMLogin-1.3.8.5 April 2023 2 ✓

Octo Browser-1.10 September 2023 2 ✓

Sphere-1.3 November 2023 2 ✗

AntBrowser May 2023 2 ✗

AdsPower-4.12.27 December 2022 3 ✓

AdsPower-5.4.20 April 2023 3 ✓

Category 3: Browsers that adopt the browser’s JavaScript engine
and its browser fingerprint with each user-agent selection.
Category 4: Legitimate browsers (with same user-agent and
fingerprint) used in spoofed environments to load stolen informa-
tion.

Table 1 details the investigated fraud browsers and their catego-
rization. Category (1) and (2) browsers are prevalent and exhibit
detectable inconsistencies, making them susceptible to identifica-
tion through coarse-grained browser fingerprints. Category (3)

and (4) browsers (likely employed by more resourceful attackers),
however, aim to approximate recreating a user’s entire browser
environment (and a genuine fingerprint), requiring sophisticated
fraud detection techniques. As noted by Azad et al. [7], these pre-
cise spoofs often result in configurations that are challenging to
distinguish from legitimate usage. Therefore, Browser Polygraph
focuses on detecting Categories (1) and (2) browsers using coarse-
grained fingerprinting, given its resource efficiency and practicality
for our Web-scale browser authentication goals that we will explain
in the next section.

3 Web-Scale Fingerprinting Requirements

We collaborated with FinOrg to understand their performance re-
quirements based on the technical requirements of a real-world risk
system deployed in a significant-traffic web application. This led to
two core requirements: (1) fast response time, operating within 100
milliseconds, and (2) data extracted per-user should be minimal,
under the threshold of one kilobyte.

Therefore, with these thresholds in mind, we evaluated the per-
formance overhead of the state-of-the-art fingerprinting techniques
mentioned in Section 2.1. Specifically, we evaluated the performance
overhead of three prominent fine-grained fingerprining tools: Fin-
gerprintJS [54], AmIUnique [49], and ClientJS [52]. FingerprintJS
and ClientJS were chosen due to their significant market share (as
reported by Wappalyzer [60]) in browser fingerprinting. AmIU-
nique is an academic contribution from Laperdrix et al. [27].



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Our analysis specifically focused on evaluating these tools’ re-
sponse times and data processing overhead. We calculated the av-
erage service time over five visits for each tool to assess response
times accurately. In refining our analysis of storage needs for fraud
detection, we shifted focus from the size of hashed data to the un-
derlying data structure’s size, which is crucial for hashing. This
distinction is vital as our interest lies not in the hash values but
in verifying whether a browser’s specifics align with its claimed
user-agent.

For FingerprintJS, we utilized their online tool for direct per-
formance metrics. AmIUnique’s data was gathered via its browser
extension. ClientJS required a different approach; as an npm li-
brary, we embedded it into a basic Node.js application to produce
an HTML page invoking the fingerprinting library. Before hashing,
we logged the necessary data to the console to evaluate its storage
requirements.

Table 2 demonstrates our evaluation results. While AmIUnique
offers extensive fingerprint data collection through its browser
extension, its service time and storage needs do not satisfy the
requirements. FingerprintJS and ClientJS, although fast, fail to meet
the data storage requirement. These results are in line with expecta-
tions, as fine-grained fingerprinting, which is required for uniquely
identifying a specific user’s browser, inherently requires extracting
a significant amount of data.

Given the performance overhead of current fingerprinting tech-
niques, particularly given the FinOrg requirements for high-traffic
scenarios and real-time security requirements, we proposeBrowser
Polygraph. Browser Polygraph is guided by two principal crite-
ria:

(1) Minimizing latency: Targeting efficiency, Browser Poly-
graph is optimized to operate within real-time security con-
straints.

(2) Minimizing data size: It is designed to function effectively
under stringent data size limitations.

The comparison in Table 2 underscores our approach. We aim
for rapid response times akin to FingerprintJS and ClientJS while
significantly reducing the fingerprint data size. This balance makes
Browser Polygraph an optimal solution for Web-scale fraud de-
tection, tailored for the stringent requirements of modern digital
security landscapes, addressing both efficiency and scalability (we
will explain the performance metrics of Browser Polygraph in
Section 7.5). It is important to note that the comparison in Table 2
highlights timing and memory overhead as the key factors in the
initial stage of fingerprint-based fraud detection, where browser
data is collected. With respect to performance, fine-grained tech-
niques are primarily designed for user tracking. However, not all of
the detailed information collected by these techniques is necessarily
efficient for identifying lying browsers, which is the main focus of
the coarse-grained fingerprinting approach (Browser Polygraph)
proposed in this paper.

4 Threat Model

In this paper, we consider an adversary equipped with a victim’s cre-
dentials (such as username, password, or cookies) and their browser
fingerprint, which includes the user-agent and any other stolen
browser information (which could be bought on the dark web [42]).

Table 2: Comparison of time and storage requirements for

fine-grained fingerprinting tools and our proposedWeb-scale

data-driven fraud detection solution.

Tool Avg. service-time Storage req.

AmIUnique ~1.5s ~60KB

FingerprintJS 51ms ~23KB

ClientJS 37ms ~10KB

Browser Polygraph 6ms 1KB

The attacker’s objective is to execute an Account Takeover (ATO)
attack using a fraud browser. This adversary has the capability to
customize and alter the settings of a chosen fraudulent browser to
mimic the victim’s fingerprint (the attributes of which have been
discussed in Section 2.1). We assume that the attacker will, at a min-
imum, accurately set the most straightforward and critical attribute
for browser fingerprint spoofing—the victim’s user-agent.

On the defense front, the primary aim of this paper is to introduce
a continuous, low-overhead, fingerprinting-based fraud detection
mechanism that detects such ATO attacks. This defense mechanism
is distinct from risk-based authentication schemes that validate
a user’s fingerprint upon logins [6, 29] or in response to access
requests to sensitive actions. Our approach focuses on persistently
monitoring and restricting access of fraud browsing sessions to
the FinOrg’s infrastructure, thereby minimizing the attack surface
available to malicious actors.

5 Overview

In this research, we introduce a prototype that combines efficient
coarse-grained browser fingerprinting with machine learning to
identify suspicious browsing activity by detecting if a browser is ly-
ing about its user-agent. Notably, we are specifically not exploring
new browser fingerprinting techniques. Instead, we focus on using
established, yet effective, methods to detect user sessions showing
inconsistent behaviors between the claimed browser and the ac-
tual browser. Our system is designed to seamlessly adjust to new
browser updates, ensuring it remains effective against emerging
suspicious browser fingerprints.

Our fingerprinting technique targets discrepancies in browsers’
implementation of the JavaScript APIs, taking inspiration from the
work of Akhavani et al. [4]. The evolving landscape of JavaScript
APIs makes them a fertile ground for such fingerprinting efforts.

First, we generated JavaScript-based fingerprints by collecting
fingerprints on many legitimate browser vendors and versions to
identify those candidate JavaScript attributes that can be used for
fingerprinting. During this selection process, our focus was on at-
tributes that could be extracted within the performance constraints
outlined in Section 3 and that uphold privacy standards—namely,
these attributes should not enable user tracking but should be viable
for fraud detection purposes.

However, we needed to identify the discriminatory fingerprint-
able features on real-world browsers, which we found are varied in
number and different configurations than we could manually test.
We deployed our candidate fingerprint collection script through our



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

 Fraud Detection 
at Web-Scale

Training 
Machine-Learning

Model

Data 
Pre-Processing

Real-World 
Data Collection

Candidate 
Fingerprint 
Generation

Drift Detection

Figure 1: Overview of Browser Polygraph offering fraud detection at Web-scale. Rectangles in green and white colors suggest

online vs. offline tasks.

collaboration with FinOrg. After gathering data for several months,
we analyzed it, to identify the JavaScript-based fingerprints that
were significant for detecting browser versions. The resulting set of
coarse-grained browser fingerprints then served as the foundation
for our machine learning model. The model’s objective is straight-
forward: to determine if the user-agent of a browser matches the
expected features of a similar but legitimate browser.

Figure 1 shows a high-level design of our prototype, which in-
cludes the following core components:

Candidate Fingerprint Generation. We ran multiple JavaScript
fingerprint extractions on legitimate browser versions/vendors
and identified candidate JavaScript attributes with consider-
able output variances between browsers.

Real-World Data Collection. We deployed a collection of the
candidate fingerprintable JavaScript attributes on FinOrg,
and collected this data.

Data Pre-Processing. After processing the collected candidate
fingerprintable data, we analyzed it to identify key discrimi-
natory fingerprintable features, to reduce the ultimate size
of the collected data.

Training of Machine-Learning Model. After identifying the fea-
tures, we trained a clustering algorithm. Its primary function
is to group browsers together based on how they implement
the JavaScript APIs.

Fraud Detection. With the clustering algorithm, Browser Poly-
graph identifies if the features of a browser (extracted using
the coarse-grained fingerprints) map to the same cluster as
the browser’s user-agent. Non-matching is indicative of
fraud, and we further calculate semantic similarity between
the claimed browser and the fingerprint-matching browser
to assign a risk factor.

Drift Detection. We can routinely assess the clustering algorithm’s
ability to correctly assign clusters to new browser versions,
initiating retraining as needed to maintain accuracy.

Emphasizing user experience, our design minimizes operational
disruptions, conducting most processes offline while handling real-
time Data Collection and Fraud Detection.

6 Design

Now, we delve deeper into the structural and functional aspects of
our fraud detection system Browser Polygraph. Each of the five
components, previously highlighted in Section 5, will be examined
in detail to offer a comprehensive understanding of their design
and operation.

6.1 Candidate Fingerprint Generation

The central objective of this component is the identification of can-
didate JavaScript fingerprints that are suitable to be evaluated for
their usefulness in the subsequent step of Real-World Data Collec-
tion. These candidate fingerprints aim to discern variations in the
implementation of JavaScript APIs between legitimate browsers.
Our emphasis, unlike prior work, is not on pinpointing specific
browser versions/vendors but to achieve coarse-grained browser
fingerprinting. As our evaluation in Section 7 will show, this gran-
ularity is sufficient to detect discrepancies that may emerge during
fraud detection.

While the quantity of candidate fingerprints advanced to the
subsequent phase is flexible, to collect data from FinOrg, they must
align with the timing and data storage requirements outlined in Sec-
tion 3. Additionally, it was essential that the candidate fingerprints
be privacy-preserving and not enable user tracking. Therefore,
rather than using all possible candidate fingerprints, we ran auto-
mated experiments on browser instances to identify distinguishing
candidate fingerprints.

We tested browsers from Chrome-based and Firefox releases
from mid-2017 to mid-2022. Notably, the testing environments
varied: while we often used BrowserStack, sometimes local in-
stallations of browsers were used. Throughout this project, we
only needed to perform the candidate fingerprint generation stage
once, in mid-2022. Following this, we collected fingerprints for new
browser releases as needed using BrowserStack. Overall, we gath-
ered fingerprints from browser instances ranging from Chrome
59–119, Firefox 46–119 to Edge 17,18, and 80–119. In the follow-
ing, we will explain the process of generating the list of candidate
JavaScript fingerprints.



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

To select the most suitable JavaScript candidate fingerprints, we
based the initial list on Akhavani et al.’s BrowserPrint [4], as it
discussed browser fingerprinting via JavaScript attributes. Browser-
Print used the existence of a JavaScript attribute as a fingerprintable
technique: the idea being that browsers introduce different features
at different times, and these can uniquely identify the browser ven-
dor and version. However, we anticipate these features to become
less effective over time. Our insight is that, rather than storing the
existence of every fingerprintable attribute, which requires not only
storage but also continuous updating, we abstract the shape of a
specific fingerprintable JavaScript prototype by capturing only the
number of properties of the JavaScript prototype. A set of these are
our coarse-grained fingerprints.

To determine the JavaScript objects to include in our candidate
fingerprints, we prioritized the progression of JavaScript interfaces,
assembling a comprehensive list from MDN [33] documentation,
which comprised 1006 prototype names, and assessed them using
Object.getOwnPropertyNames method to count the properties of
each prototype. With the properties count serving as our coarse-
grained fingerprints, we extracted all possible fingerprints from
all candidate browsers, sorted these fingerprints based on their
standard deviation across all candidate browsers, and identified the
top 200 features from the sorted list (deviation-based features). The
normalized standard deviation of the selected features ranges from
0.0012 to 1.3853.

As discussed earlier, BrowserPrint [4] utilizes the presence or
absence of specific JavaScript properties as fingerprinting APIs,
identifying 313 such JavaScript features, which they refer to as
suspicious APIs. They analyzed these features for their unique
fingerprinting behavior across various browser versions. Because
these properties tend to appear or disappear over time, we cate-
gorize them as time-based features. We chose to integrate these
features into our real-world data collection phase. However, since
BrowserPrint’s analysis covered browser versions up to 2020, and
our study focuses on newer browsers released before mid-2022, we
anticipated that this list might be outdated for our purposes. As we
will demonstrate, only 6 remained relevant and were included in
our data pre-processing stage (explained in Section 6.3).

Another lens throughwhich browsers’ evolution can be viewed is
their varied implementations of certain functions, thus acting as po-
tential fingerprinting indicators. Targeting no-input functions, we
analyzed their behavior by navigating the top 100 websites on dif-
ferent browser instances (limited to Firefox and Chrome) using the
VisibleJS [23] extension. However, the limited volatility observed
in no-input functions led us to ignore those and narrow down our
features to 513 JavaScript candidate fingerprints (deviation-based
and time-based) for the subsequent phase (full list in Appendix-3).

6.2 Real-World Data Collection

After developing 513 JavaScript candidate fingerprints, we collabo-
rated with FinOrg to collect coarse-grained candidate fingerprints
of real-world browsers. We recorded coarse-grained candidate fin-
gerprints alongside the navigator.userAgent attribute. FinOrg
integrated our script into one flow of an online shopping platform,
with continuous data collection over eight months. During this

period, they provided us with periodic datasets, laying the ground-
work for our analysis. The data comprised integer outputs from
the 513 JavaScript candidate fingerprints, the navigator.userA
gent string, and a fully anonymized SessionID, ensuring users’
privacy (as described in Section A). We used four and a half months
of this data (comprising 205k rows) for training of our machine
learning model. In the following, we detail the process of refining
the collected data and the methodology behind the training of our
machine learning model.

6.3 Data Pre-Processing

As we delved into the collected data, unexpected patterns surfaced,
challenging our initial hypotheses established during the Candi-
date Fingerprint Generation phase. A particular data sample from
the first day of March revealed that 186 features exhibited a singu-
lar value across all samples. This was particularly notable among
time-based features, where 40% displayed unique values, suggest-
ing their diminishing relevance in newer browser versions. Conse-
quently, after thoroughly reviewing the documentation and identi-
fying vendor-specific distinctions, we refined our feature selection,
focusing on 6 of time-based features that were more indicative of
genuine browser behavior.

From analyzing the deviation-based features, we noted a signifi-
cant portion exhibited unique values (30%), leading to their exclu-
sion from further analysis. However, the remaining data revealed
inconsistencies in some feature values among identical browser
instances. Finding the root cause of these discrepancies is a dif-
ficult task: our only data is the coarse-grained fingerprint and a
user-agent, where the user-agent does not match. This could be
a fraud instance, or a benign instance, and therefore we conducted
an in-depth manual analysis of the wider breadth of legitimate
browsers, particularly of Firefox and Chrome browsers and their
derivatives. This process uncovered specific facts that influenced
those feature values (and we did not initially consider). Some of
our notable revelations from real-world data are described in the
following:
• Firefox configuration influence: Firefox has an array of secu-
rity and performance configurations via the about:config page.
Customizing these settings can inadvertently alter feature values.
For instance, disabling Service Workers through dom.serviceWork
ers.enabled can result in values related to ServiceWorker inter-
faces being zeroed. Additionally, manipulating settings such as dom.
element.transform-getters.enabled can influence properties
manifested through the Element interface.
• Chrome extensions & flags: Chrome’s equivalent to Firefox’s
configuration page is chrome:flags. While it mostly pertains
to experimental properties—and is arguably less frequently modi-
fied by the average user—it was deemed negligible for our study.
However, Chrome extensions, which are widespread among users,
were observed to impact fingerprinting values. For instance, the
DuckDuckGo extension introduced two custom properties to the
Element interface; this modification increments the integer value
of one of our features by two. To assess the influence of common
extensions, we revisited the set of default Chrome extensions pre-
viously identified by Picazo et al. [39] in 2020. At the time of our



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

review in April 2024, we found that, of the seven removable exten-
sions reported, Google had integrated the functionality of six into
Chrome as built-in apps, leaving only one as a default extension.
Notably, the removal of these integrated apps and the remaining
extension had no impact on the values of our feature set.
• Brave: a privacy-centric browser based on Chromium that could
be misidentified as Chrome. Our investigation revealed while the
examined version of Brave generated a user-agent identical to
Chrome 111, there were discernible discrepancies in attribute values
across certain interfaces, such as Element, compared to the genuine
Chrome 111.
• The Tor Browser: Mirroring Brave’s behavior, the examined
version of Tor Browser presented a user-agent string aligningwith
Firefox version 102, yet the attribute values significantly deviated
from those of the original Firefox 102. Given that Tor Browser’s
updates had lagged—being nearly a year behind the contemporary
Firefox iteration—we deemed it prudent to exclude this browser
instance from our analysis.

Based on this analysis, we adjusted our feature set, particularly
for deviation-based attributes, some of which could be modified by
user/browser privacy settings. We identified and excluded the most
affected features to enhance the reliability of our coarse-grained fin-
gerprints. Moreover, a detailed examination of real coarse-grained
fingerprints highlighted minimal deviations in certain features,
and we excluded those as well. From this process, we selected
22 deviation-based features, complemented by 6 time-based features.
This refined selection forms our comprehensive set of 28 features,
optimizing our fraud detection capabilities. The details of these
features are cataloged in Table 8 of Appendix-1.

6.4 Training of Machine-Learning Model

In this section, we delve into our data-driven fraud detection sys-
tem, Browser Polygraph. The core objective of Browser Poly-
graph is to verify the veracity of the browser’s identity, specifi-
cally its user-agent string, and to identify any significant devia-
tions that might indicate a falsified identity. Our dataset comprises
28 feature values for each user session, each linked to its respective
user-agent string. Given that feature values tend to be consistent
across similar browser releases, we opted for a semi-supervised
learning approach for our model.

The initial phase of our methodology involves disregarding the
user-agent strings and focusing solely on the feature values, which
represent real-world browser fingerprints. This data is then em-
ployed to train our clustering model, designed to group browsers
into distinct clusters. These clusters are formed based on the similar-
ities in the implementation of JavaScript APIs by different browsers.
For the clustering process, we selected the kmeans clustering algo-
rithm due to its efficacy in handling such categorization tasks.

Post-training, the model is further refined by leveraging the
ground truth of the user-agent strings. This step involves ana-
lyzing how these user-agents are distributed across the formed
clusters, thereby enabling us to assess the model’s accuracy in cor-
relating the user-agent strings with the expected browser features.
The following will provide an overview of the fitting and training
processes.

0 5 10 15 20 25
Number of Components

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cu
m

ul
at

iv
e 

Va
ria

nc
e

Figure 2: Cumulative variance based on the number of com-

ponents in PCA.

6.4.1 Pre-Processing. Some of our features had large values which
could skew the results of our model towards them. Therefore,
we used Standard Scaler to scale some of our deviation-based at-
tributes. The time-based attributes were already in the binary format
which was suitable. Another crucial aspect of our preprocessing
was outlier detection, for which we employed the Isolation Forest
method [30]. This method was selected due to its effectiveness in
identifying anomalies in high-dimensional datasets. By setting a
threshold of 0.002%, we successfully filtered out data presumed
to be outliers, ensuring a more refined and accurate dataset for
subsequent analysis. Upon examining the data excluded by the
0.002% threshold, it is evident that none of the eliminated records
(172 rows) corresponded to feature values indicative of a legitimate
browser instance, as delineated in Section 6.1. Hence, this threshold
selection is demonstrably appropriate.

6.4.2 Feature Selection. In the feature selection phase, we used
Principal Component Analysis [21] (PCA) to streamline our dataset.
PCA is a technique in machine learning that reduces dimensionality
while retaining the most informative aspects of the data. It works
by transforming the original features into a new set of variables,
the principal components, which are orthogonal and maximize
variance. The decision to use PCA was driven by its efficiency in
simplifying complex data without significant loss of information.
Analysis of the PCA results, particularly through the visualization
shown in Figure 2, revealed that using seven components could
capture over 98.5% of the cumulative variance in the dataset. This
level of variance was deemed optimal for our analysis, striking a
balance between simplicity and information retention.

6.4.3 Clustering. In this part of our analysis, having established
seven as the optimal number of components through PCA, we em-
ployed the kmeans clustering algorithm on our dataset (kmeans was
chosen due to its efficiency and straightforward implementation).
The optimal number of clusters (𝑘) was determined using the elbow
method, as illustrated in Figure 3. This method plots the Within-
Cluster Sum of Squares [20] (WCSS) against the number of clusters



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

to evaluate the variance within each cluster. A decrease in WCSS
signifies a closer alignment of data points to their cluster centroids.
In our analysis, the elbow graph demonstrated potential optimal
cluster counts at 𝑘 = 3, 𝑘 = 6, and 𝑘 = 11. At these points, the graph
shows a noticeable “elbow”, implying that additional clusters would
not significantly improve the fit to the data. To further refine our
decision, we analyzed the relationship between WCSS values and
the number of clusters in Figure 4, where a pronounced increase at
𝑘 = 11 suggested it as the ideal choice.

After selecting k=11 as the optimal number of clusters, we eval-
uated our model’s accuracy. Since we are using a semi-supervised
learning approach, our accuracy metric measures how well the
clusters represent the user-agent instances. We define a cluster
assignment as accurate if all instances of the same user-agent are
assigned to the same cluster, specifically the cluster containing the
majority of data points for that user-agent string. For instance, if
most data points with the user-agent of Chrome 112 are assigned
to cluster 0, we consider cluster 0 as the corresponding cluster for
Chrome 112. Any data with user-agent of Chrome 112 that is
assigned to a different cluster would be considered misclustered.
Using this definition, our model achieved a clustering accuracy of
99.6%.

Beyond model accuracy, we further validated the user-agents
and their corresponding clusters to ensure they matched our expec-
tations. This process involved cross-referencing our results with
legitimate browser instances from the Candidate Fingerprint Gen-
eration stage (Section 6.1). We confirmed that, in over 98% of the
data, the corresponding clusters matched the expected behavior.
However, we noted some discrepancies with older browser versions,
such as Chrome 81 and Edge 17. On closer inspection, we found
that these versions had few data points, in some cases less than
100 instances. This limited dataset occasionally led to misleading
results, such as Chrome 81 fingerprints showing Firefox-like feature
sets. For these specific user-agents, making up less than 2% of
our traffic, we decided to align the cluster number with the feature
values of legitimate browser instances, extracted in the Candidate
Fingerprint Generation stage (Section 6.1). This adjustment was
essential for maintaining the accuracy of our clustering.

The discrepancies observed with older browser versions can
be attributed to the lack of sufficient descriptive data points, a
challenge that is not uncommon in machine learning applications
dealing with evolving technologies. To mitigate this issue in the
future, a more extensive data collection process would be beneficial,
akin to the detailed approach in Google Picasso’s work [9]. Such a
method provides a richer dataset, enabling more accurate clustering
of even the lesser-known or outdated browser versions.

With prior adjustments, the distribution of user-agents across
the selected clusters (with 𝑘 = 11) is detailed in Table 3. To illustrate
why our selected cluster size offers a more fitting analysis than
other potential choices (3, 6, or 11), we examined the distribution
of user-agents across a 𝑘 = 6 cluster scenario. The outcomes
highlighted in Table 9 (Appendix-2) versus our optimal selection
in Table 3, affirm that our choice more effectively differentiates be-
tween browser releases, underscoring its suitability for our analysis.
We have also explored the impact of changing model parameters on
the accuracy of the model in Appendix-4, which further reinforces

0 5 10 15 20 25 30
Number of clusters

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
CS

S

1e6

Figure 3: Elbow method to select the optimal number of

clusters (WCSS vs. number of clusters).

0 5 10 15 20 25 30
Number of clusters

0.0

0.2

0.4

0.6

0.8
Re

la
tiv

e 
Di

ffe
re

nc
e

Figure 4: Relative WCSS vs. clusters: showing k=11 as an

optimal number of clusters for our kmeansmodel.

that our choice of 28 features, 7 PCA components, and k=11 clusters
lead to optimal accuracy for Browser Polygraph.

6.5 Fraud Detection

After successful training, the Browser Polygraph model can per-
form real-time monitoring and detection of potentially fraudulent
activities in live Web traffic. The operational process of our Fraud
Detection system is as follows:

When a user accesses FinOrg’s website, JavaScript code collects
the required feature values from their browser. These values are
then analyzed by Browser Polygraph to identify the user’s cluster
affiliation. A key aspect of fraud detection involves comparing this
predicted cluster with the cluster corresponding to the browser’s
declared user-agent (refer to Table 3). Any mismatch triggers our
specialized risk analysis function.



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

Table 3: user-agents assigned to clusters with k=11.

Cluster user-agents

0 Chrome 110-113, Edge 110-113

1 Firefox 101-114

2 Chrome 59-68, Firefox 51-91

3 Chrome 114, Edge 114

4 Chrome 69-89, Edge 79-89

5 Chrome 102-109, Edge 102-109

6 Edge 17-19, Firefox 46-50

9 Firefox 93-100

10 Chrome 90-101, Edge 90-101

Algorithm 1 Algorithm to calculate the risk factor based on a
session’s user-agent and its predicted cluster.

Input: sessUserAgent, predictedCluster, userAgentTable
Output: riskFactor
riskFactor←∞
for each uA in userAgentTable[predictedCluster] do

if sessionUserAgent.vendor ≠ uA.vendor then
distance← 20

else

diff← abs(sessUserAgent.version - uA.version)
distance← floor(diff / 4)

end if

if distance < riskFactor then
riskFactor← distance

end if

end for

return riskFactor

The risk analysis function initially calculates the distance be-
tween a session’s user-agent and every other user-agent in the
predicted cluster (see Algorithm 1). The smallest of these distances
is then employed as the session’s risk factor. We define the dis-
tance between two user-agent strings based on the differences
in their vendors and version numbers. For two user-agents with
different vendors, the distance is at its maximum value. However,
for user-agents from the same vendor, we first calculate the ab-
solute numerical difference between their version numbers and
then divide this difference by 4— which we empirically selected
referring to Table 3. This method effectively reduces the likelihood
of false negatives, especially when a browser instance is incorrectly
assigned into a cluster of a similar vendor but a different release.

Browser Polygraph’s strength lies in its efficiency and adapt-
ability. The computationally intensive task of training the model is
performed offline, ensuring that the real-time fraud detection pro-
cess is possible. This not only minimizes delays during user interac-
tion but also allows for ongoing system enhancements. In Section 7,
we will explore the correlation between these risk factors and
other risk metrics within FinOrg.

6.6 Drift Detection

An essential feature of Browser Polygraph is its ongoing eval-
uation mechanism to monitor the performance of the clustering
algorithm. This includes regularly assessing the accuracy in assign-
ing clusters to new browser releases. We implemented a robust drift
detection strategy that actively identifies shifts in data patterns or
browser behavior. When such shifts are detected, indicating a po-
tential divergence from the established clustering norms, Browser
Polygraph can automatically initiate a retraining process. This
retraining ensures that Browser Polygraph remains up-to-date
and accurately aligned with the latest browser versions’ features.

More specifically, on designated dates, the automatic drift detec-
tion module evaluates the cluster number and accuracy of Browser
Polygraph in clustering new browser releases. These dates are
strategically chosen a few days after the latest releases of Firefox,
Chrome, and Edge browsers. When the cluster number of a new
browser release aligns with its closest release according to Table 3
with an accuracy rate above 98%, it indicates no significant shift
in browser behavior, and no retraining is necessary. However, a
change in the cluster number (compared to its closest release from
Table 3) or a drop in the accuracy rate below 98% signals a shift
in browser behavior, prompting Browser Polygraph to automat-
ically initiate retraining. Section 7.3 discusses the process using
Browser Polygraph’s trainedmodel (fromMarch tomid-July 2023)
to perform drift analysis on newly collected data (from late-July to
October 2023).

7 Evaluation

7.1 Real-world Experiment

To demonstrate the practical application of Browser Polygraph in
detecting fraud, we collaborated with FinOrg for data collection on
one of their secondary purchase portals, as outlined in Section 6.2.
We used 4.5 months of this data to train our kmeans model (Sec-
tion 6.4). The resulting clusters formed the baseline for our fraud
detection method (Table 3).

For training purposes, we analyzed 205k logged-in user sessions
from March to mid-July 2023, which included user-agents from
113 different browser releases. FinOrg also provided session tags
from their internal systems, specifically Untrusted_IP, Untruste
d_Cookie, and ATO (Account Take-Over), used solely for evaluation
purposes. These tags identified sessions from unfamiliar IPs (note
that we did not receive the old or new IP, just that FinOrg was
unfamiliar with the IPs), newly-established cookies, or those with
suspicious activities linked to the browser fingerprint within a
72-hours period (meaning that FinOrg believed the account was
involved in an ATO).

This dataset of only logged-in users minimized interference from
web crawlers and bots, offering a solid foundation for our model.
Post-training, Browser Polygraph flagged 897 sessions as suspi-
cious during four-and-a-half-month period, considering various
risk factor levels. This number of flagged sessions aligns with
fraud data from similar studies, such as Varmedja et al. [64]’s work
that used a popular credit card fraud database from Kaggle with
0.173% of reported credit card frauds in 2019 [22].

Browser Polygraph showed heightened accuracy in identifying
potential fraud, with flagged sessions having a 27% and 26% higher



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Table 4: Percentages of the traffic having Untrusted_IP, Untrusted_Cookie or ATO flags set in the entire traffic comparing to

the batch flagged by Browser Polygraph and a randomly chosen batch.

Category Untrusted_IP Untrusted_Cookie ATO

All users 51% 49% 0.43%

Flagged by Browser Polygraph (all) 78% 75% 2%

Flagged by Browser Polygraph (risk factor > 1) 93% 89% 3.89%

Flagged by Browser Polygraph (risk factor > 4) 94% 85% 5.83%

Randomly-chosen 48% 53% 0.22%

likelihood of being tagged as Untrusted_IP and Untrusted_Coo
kie flags, respectively. Sessions flagged by Browser Polygraph
were also about five times more likely to be associated with ATO
activities (Table 4). The correlation between Browser Polygraph’s
risk factor and the security tags was notable. Higher riskfa
ctors correlated with increased cases of Untrusted_IP, Untrus
ted_Cookie and ATO flags, underscoring Browser Polygraph’s
effectiveness. Analysis indicated that lower risk factors were
often assigned to sessionswhere the claimed user-agent shares the
same vendor but only a slight variation in version number compared
to other user-agents in the assigned cluster. Such cases might not
always indicate fraud but could result from update inconsistencies
or the use of certain extensions or browser configurations impacting
attribute values (refer to Section 6.3).

In a supplementary experiment, we compare against a randomly
selected 897 sessions from our dataset of 205k user sessions for
further analysis. The results confirmed Browser Polygraph ’s
superior performance over the random selection method, demon-
strating its utility in identifying potentially fraudulent sessions
with increased precision (Table 4).

Despite Browser Polygraph’s success in identifying sessions
with Untrusted_IP and Untrusted_Cookie flags, only 2% of these
897 sessions have ATO flags (though this rate nearly doubled and
tripled in batches with higher risk factor). This lower-than-
expected detection rate may be due to various factors, such as the
specific nature of the data (the tagging of ATO) or the context of sys-
tem integration. To gain a better visibility, the next subsection will
evaluate Browser Polygraph’s effectiveness in detecting sessions
originating from fraud browsers.

7.2 Fraud Browsers’ Detection

We next evaluate the capability of Browser Polygraph to identify
fraudulent attempts at spoofing legitimate browser fingerprints.
Specifically, Browser Polygraph focuses on uncovering fraud
within browsers classified under Categories (1) and (2) (in Table 1).
It achieves this by analyzing discrepancies between the user-agent
and the extracted fingerprints. To facilitate the evaluation, we es-
tablished a private website equipped with the fingerprinting script
developed during our Real-World Data Collection phase (Section 6.2).
We were the only ones who accessed the website.

The primary objective is to assess Browser Polygraph’s ef-
fectiveness in identifying fraudulent sessions. To this end, we se-
lected several fraud browsers from Categories (1) and (2) (Table 1).

These browsers were installed on a Windows machine, and mul-
tiple browser profiles were created for each, employing various
user-agents representative of all clusters in Table 3. We then vis-
ited our private test website using each profile. In creating browser
profiles, we tailored each one based on the browser’s capacity for
customization. This involved selecting a user-agent and their cor-
responding browser engines (if possible), aiming for diverse repre-
sentation. Where feasible, for each cluster in Table 3, we generated
two profiles using candidate user-agents from the same cluster.
In cases where a fraud browser limited this capability, we opted for
either randomized user-agents or those uniquely provided by the
browser itself.

Our approach in this experimental setup was designed to assess
the capability of Browser Polygraph to detect sessions initiated
by fraud browsers. We passed the data collected in this experi-
ment to Browser Polygraph’s Fraud Detection module (trained
in Section 6.4) to evaluate its effectiveness in identifying fraudu-
lent browser fingerprints. The data presented in Table 5 highlights
Browser Polygraph’s effectiveness in detecting fraudulent ses-
sions, evidenced by a high average risk factor for these sessions.

While Browser Polygraph demonstrated an impressive recall
rate of 79% for the first three fraud browsers in Table 5, the recall rate
for Sphere browser was observed at 67%, this outcome is primarily
influenced by two factors. The first concerns the freely available
version of the Sphere software, which is significantly outdated. This
limits users’ ability to customize their preferred user profiles. The
second factor is the predominance of user profiles in this version
that adhere to older versions of Chrome (e.g., Chrome 63, 64, 65),
with Sphere 1.3 emulating a fingerprint similar to Chrome 61, all
falling within Cluster 2. This latter reason also accounted for the
non-flagged attempts by the first three browsers.

7.3 Drift Analysis

With the continual release of new browser versions and fraud
browsers, a pertinent question arises: How long does our trained
model in the Browser Polygraph remain effective? This subsec-
tion explains the behavior of Browser Polygraph’s drift detection
strategy (refer to Section 6.6) that focuses on determining the neces-
sity and timing for retraining Browser Polygraph via an extensive
drift analysis.

Referring to the trainedmodel of Browser Polygraph in Table 3,
for a new browser release, such as Chrome 115, if the feature set
values do not significantly differ from the closest prior release (e.g.,
Chrome 114), we do not expect our drift detection algorithm from



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

Table 5: Fraud browsers’ detection capability via Browser Polygraph.

Browser Flagged Num Not-Flagged Num Avg. risk factor Recall

GoLogin-3.3.23 12 4 11.66 75%

Incogniton-3.2.7.7 7 2 8.85 78%

Octo Browser-1.10 16 3 10.18 84%

Sphere-1.3 6 3 10.5 67%

Section 6.6 to trigger a retraining. However, if there is a drastic
change in the values of the feature set, resulting in a different cluster
number or a noticeable drop in accuracy, the algorithm will initiate
a retraining process. To evaluate how the drift detection module
accurately identifies retraining time, we used the clustering model
from Section 6.4 that was trained from March to mid-July 2023.
Subsequently, we obtained new data spanning from late-July to
October 2023 from FinOrg, encompassing several releases of major
browsers. With this updated dataset, we selected specific dates to
evaluate the accuracy of Browser Polygraph in clustering newly
released browsers. These dates were strategically chosen a few days
following the latest Firefox release, with the newest Chrome and
Edge versions released approximately one to two weeks earlier.
Our focus was on two key metrics: determining the predominant
cluster number for each new browser instance and calculating the
percentage of browsers assigned to this cluster for each candidate
browser, as detailed in Table 6.

Our findings indicate that new releases of Chrome, Firefox, and
Edge were correctly clustered with an accuracy exceeding 99% for
approximately three and half months. However, starting from late
October, a shift in the assigned cluster number for Firefox 119 was
observed, alongside a decline in the clustering accuracy for Chrome
119. This served as an indicator for retraining our clustering model.
Further examination of the feature values for Firefox 119 confirmed
substantial changes in the Element prototype’s implementation
compared to its predecessor, providing additional evidence support-
ing the hypothesis for the retraining time.

It is worthmentioning that our observations in this analysis align
with the retraining signal from the drift detection module, which
was triggered in October. Although in this analysis, our trained
model in Browser Polygraph remained accurate for three and a
half months, this duration may vary depending on the parameters
of the model and the extent of changes in new browser releases.

7.4 Privacy Analysis

To evaluate the privacy-preserving nature of Browser Polygraph’s
feature set, we analyzed the anonymity sets and entropy of fea-
tures within our dataset, which comprises 205k fingerprints. The
former assesses how diverse the fingerprints are, while the latter
provides insight into the diversity of individual features. Figure 5
displays the percentage of user fingerprints across anonymity sets
of varying sizes. Notably, only 0.3% of our fingerprints are unique,
a negligible rate compared to a browser fingerprinting study that
reported 33.6% unique fingerprints [18]. Furthermore, while the
same study found 8% of fingerprints in anonymity sets larger than

Table 6: Drift Analysis of Browser Polygraph for data col-

lected from late-July to October 2023.

Browser Date Cluster Accuracy

Chrome 115 3 99.45
Firefox 115 1 99.3
Edge 115

07/25
3 100

Chrome 116 3 99.6
Firefox 116 1 99.99
Edge 116

08/25
3 99.88

Chrome 117 3 99.25
Firefox 117 1 99.81
Edge 117

09/25
3 99.94

Chrome 118 3 99.65
Firefox 118 1 99.46
Edge 118

10/23
3 99.91

Chrome 119 3 97.22
Firefox 119 10 98.57
Edge 119

10/31
3 99.84

0 20 40 60 80 100Al
l F

ea
tu

re
s

Size Category
1
2-10
11-50
51-100

101-500
501-1000
>=1001

Figure 5: Percentage of fingerprints in anonymity sets.

50, our study shows a significantly higher rate of 95.6%, making it
nearly impossible to track individual users.

We also investigated Shannon entropy and normalized entropy
for the collected attributes (user-agent and the integer outputs) as
reported in Table 7 (sorted by normalized entropy). The user-agent
was the most diverse feature in our dataset, yielding a normalized
entropy value of 0.58. This value is the same as the normalized
entropy of 0.58 for the user-agent string for AmIUnique study [18].
This similarity emphasizes that our data collection method does not
increase user identifiability beyond what is already possible with
the user-agent string alone, thus maintaining user anonymity.

7.5 Performance Analysis

To validate our adherence to the performance benchmarks set in Sec-
tion 3, we measured Browser Polygraph’s response time within



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Table 7: Entropy information of selected features used in Browser Polygraph, sorted by normalized entropy.

Features Entropy Normalized Entropy
user-agent 5.97 0.58

Object.getOwnPropertyNames(Element.prototype).length 2.51 0.47
Object.getOwnPropertyNames(SVGElement.prototype).length 2.33 0.43
Object.getOwnPropertyNames(Document.prototype).length 2.17 0.42

Object.getOwnPropertyNames(IntersectionObserver.prototype).length 1.33 0.37
HTMLVideoElement.prototype.hasOwnProperty(’webkitDisplayingFullscreen’) 0.58 0.37

Object.getOwnPropertyNames(CSSRule.prototype).length 0.56 0.35
Object.getOwnPropertyNames(StaticRange.prototype).length 0.58 0.29

the experimental setup described in Section 7.2. Through a series
of tests mirroring those applied to fine-grained fingerprinting solu-
tions, Browser Polygraph demonstrated an average response time
of 6ms. Additionally, the storage requirement for our fingerprints
was only 1KB, which significantly surpasses the efficiency of the
solutions in Table 2.

In Appendix-5, we compare the performance of Browser Poly-
graph’s coarse-grained fingerprints with two fine-grained tech-
niques for browser clustering (FingerprintJS and ClientJS) using
synthetic data. The results demonstrate that Browser Polygraph
performs better in clustering for this specific experiment. This is
because Browser Polygraph’s coarse-grained fingerprinting is
fundamentally designed for detecting lying browsers, making it
more efficient for browser clustering purposes.

8 Discussion

The most trivial step for configuring a fraud browser is setting the
user-agent value—alignment of this value to the victim’s actual
user-agent however does not suffice for the adversary to fully
spoof a victim’s browser. A fraud browser could still show incon-
sistencies in its other configurations, and the primary goal of this
paper is to identify such inconsistencies. Our solution, however,
has some limitations:
Bypassing Browser Polygraph. Lin et al. [29] showed how
stealing and spoofing actual user fingerprints could bypass the au-
thentication process of critical websites. Their work can bypass
Browser Polygraph in theory and it is essentially the problem of
many JavaScript-based detection techniques; however, their cur-
rent solution was not spoofing the output of Object.getOwnPro
pertyNames function for our feature set values, and it needs an
additional update to cover it. While these cat-and-mouse games
can be played indefinitely, the goal of this paper is not to identify
new fingerprinting techniques but rather to introduce the concept
of coarse-grained fingerprints that can be used in a production
website with strict limitations on fingerprint extraction time and
data size.
user-agent randomization. user-agent randomization is a com-
mon anti-fingerprinting strategy, potentially increasing false posi-
tives in Browser Polygraph. However, we do not recommend its
application due to potential complications, such as triggering bot
detection mechanisms [40].
Verification of new browsers. Browser Polygraph’s current
focus is on popular desktop browsers and those with analogous

user-agent strings, due to the prevalence of fraud browsers of-
fering more tools to spoof desktop rather than mobile browsers.
Currently, it does not encompass mobile browsers or those with
unique engines and user-agent strings. However, extending its
verification capabilities to these areas is possible. This expansion
would involve gathering baseline data for these new browsers, as de-
tailed in Section 6.1. With baseline values and a thorough real-world
dataset for any new browser type, adapting Browser Polygraph
for detection becomes straightforward.
Deployment scope. The current deployment of Browser Poly-
graph leverages a coarse-grained browser fingerprinting technique,
primarily designed for as a lightweight fraud detection mechanism
in high-volume traffic scenarios. It is crucial to acknowledge that
Browser Polygraph is not configured to detect fraudulent ses-
sions conducted by sophisticated attackers, who may completely
spoof the fingerprinting environment or use browsers classified
under category 3 in Table 1. To counter these advanced spoofing
efforts, more complex detection methods are necessary, perhaps
binary analysis of each specific software, which can unearth unique
software-specific fingerprintable attributes.
In our observations, for instance, AntBrowser [50] (similar to many
other browsers) includes an ANTBROWSER object in its namespace
and antBrowser-prefixed attributes on the window object, signifi-
cantly increasing its fingerprintability. This is similar to the observa-
tion that Nikiforakis et al. [36] made where browser extensions that
allow browser spoofing ironically make browsers more fingerprint-
able. While these attributes were initially identified through manual
analysis, future work could automate this process, employing tech-
niques such as fuzzing or binary analysis. Such advancements can
enable identifying software-specific attributes and directly target
the fingerprinting of fraud browsers.
Scale of the database. The current implementation of Browser
Polygraph employs a dataset whose size does not yet pose signifi-
cant storage challenges. However, should the dataset grow to an
unmanageably large scale in the future, thereby impacting train-
ing efficiency, a viable solution would be the adoption of Stratified
Sampling [32]. This approach is particularly effective for managing
large datasets while ensuring the representativeness of diverse data
segments. Using Stratified Sampling, we can efficiently maintain a
representative sample of browser features, even from less popular
browser instances, ensuring that our dataset remains manageable
and comprehensive.

Manual efforts.While Browser Polygraph automates the ma-
jority of operations, such as candidate fingerprint generation, fraud
detection, and drift detection, manual inspections were necessary



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

during the data pre-processing stage to address inconsistencies
in deviation-based features. As discussed in Section 6.3, we man-
ually assessed the impact of browser configurations on these fea-
tures and determined whether to retain or discard specific features.
Similarly, we manually installed popular extensions on Chrome
to observe their influence on feature values. In case our selected
features become ineffective over time—meaning that retraining
Browser Polygraph does not achieve the required accuracy—or if
there are drastic updates to browser implementations necessitating
another round of pre-processing, we need to automate the manual
inspections involved in this phase.

9 Related Work

This section discusses prior research relevant to our study on
browser fingerprinting and fraud detection:
Risks of fingerprint spoofing. Liu et al. [31] explore how spoofing
browser fingerprints can affect advertising content, while Lin et
al. [29] demonstrate the potential for spoofed fingerprints to bypass
websites authentication.
Nature of misuse. In the context of misuse, Kawase et al. [24]
explore ATO within an online vehicle marketplace, presenting de-
tection and prevention methods. Campobasso et al. [10] evaluate
illegal sales of user fingerprints and tools for impersonating browser
identities.
Advancements in browser fingerprinting. Nikiforakis et al. [36]
focus on extracting browser family and version information using
a set of techniques, such as ordering of methods and properties and
detection of vendor-specific methods. Akhavani et al. [4] provide a
complete list of JavaScript features for browser differentiation, but
it might need revision via new browser releases. Schwarz et al. [44]
propose automated techniques for inferring browser environments.
Browser fingerprinting in thewild.Durey et al. [13] and Senol et
al. [45] explore the adoption of browser fingerprinting in real-world
scenarios, with the latter extending the analysis to its effectiveness
in fraud detection, particularly in safeguarding against unautho-
rized access and enhancing account security. Wu et al. [67] conduct
a large-scale study of adversarial fingerprints—intentionally crafted
by attackers to evade detection—and benign browser fingerprints,
highlighting the role of browser fingerprinting in bot and fraud
detection
Browser authentication techniques. Bursztein et al. [9] use
graphical fingerprints for browser verification, and Laperdrix et
al. [25] employ canvas challenges for authentication. Google of-
fers Private State Tokens [19] as part of the Privacy Sandbox [19]
project, providing a privacy-preserving method to validate users
and potentially replacing third-party cookies. There are also pro-
posals such as Web Environment Integrity API [66] which advocate
for browser verification through attestation tokens. Additionally,
Cloudflare’s Privacy Pass [12] uses cryptographic tokens to au-
thenticate browsers, allowing websites to verify legitimate traffic
without tracking individual users.
Fraud browsers’ detection.Traditionally, security researchers and
industry professionals have relied on manual analysis to identify
suspicious parameters in requests generated by fraud browsers, as
highlighted by Azad et al. [7]. These mitigation strategies, often
based on regular expressions, face obsolescence with each new

release of fraud browsers. Compounding this issue, fraud browser
vendors frequently update their software to align with new browser
versions, thereby diminishing the effectiveness of existing fraud
detection patterns. An automated prototype that adapts to ongoing
browser updates is, therefore, a critical need in the industry.

10 Conclusion

In conclusion, this paper presents Browser Polygraph, a novel ap-
proach to addressing the challenges of detecting lying browsers in
high-traffic environments. Browser Polygraph excels in merging
the demand for detailed browser data with the scalability essential
for real-time fraud detection. We show a new direction for browser
fingerprints—coarse-grained fingerprints that can satisfy the per-
formance constraints of a financial company FinOrg. This research
marks a significant step forward in the fight against browser finger-
print spoofing and fraud browser detection, offering insight that
could shape future developments in the field.

Acknowledgments

Wewould like to thank the anonymous reviewers and our shepherd
for their valuable feedback, which helped us improve our paper. We
also appreciate the support of the Department of Defense and the
National Science Foundation (NSF) under grants No. CNS-2127232,
CNS-2346845, and CNS-2419829. This work also relates to the De-
partment of Navy award N00014-24-1-2193 issued by the Office of
Naval Research. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the Office of Naval Research,
the NSF or the US Government.

References

[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security. 674–689.

[2] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprinters.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 1129–1140.

[3] Gemini Advisory. 2023. Illicit Antidetect Platforms vs. Anti-Fraud Solutions.
https://geminiadvisory.io/antidetect-platforms-vs-anti-fraud-solutions.

[4] Seyed Ali Akhavani, Jordan Jueckstock, Junhua Su, Alexandros Kapravelos, Engin
Kirda, and Long Lu. 2021. Browserprint: An analysis of the impact of browser
features on fingerprintability and web privacy. In Information Security: 24th In-
ternational Conference, ISC 2021, Virtual Event, November 10–12, 2021, Proceedings
24. Springer, 161–176.

[5] Akhavani, Seyed Ali. 2024. bowserprint github. https://github.com/sa-
akhavani/browserprint.

[6] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. 2020. FPSe-
lect: low-cost browser fingerprints for mitigating dictionary attacks against web
authentication mechanisms. In Proceedings of the 36th Annual Computer Security
Applications Conference. 627–642.

[7] Babak Amin Azad, Oleksii Starov, Pierre Laperdrix, and Nick Nikiforakis. 2020.
Taming The Shape Shifter: Detecting Anti-fingerprinting Browsers. In DIMVA
2020-17th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment.

[8] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. 2012.
User tracking on the web via cross-browser fingerprinting. In Information Security
Technology for Applications: 16th Nordic Conference on Secure IT Systems, NordSec
2011, Tallinn, Estonia, October 26-28, 2011, Revised Selected Papers 16. Springer,
31–46.

[9] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. 2016. Pi-
casso: Lightweight device class fingerprinting for web clients. In Proceedings
of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices.
93–102.

https://geminiadvisory.io/antidetect-platforms-vs-anti-fraud-solutions


IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

[10] Michele Campobasso and Luca Allodi. 2020. Impersonation-as-a-service: Charac-
terizing the emerging criminal infrastructure for user impersonation at scale. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1665–1680.

[11] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-) browser fingerprinting
via OS and hardware level features. In Proceedings 2017 Network and Distributed
System Security Symposium. Internet Society.

[12] Cloudflare. 2024. Privacy Pass. https://developers.cloudflare.com/waf/tools/
privacy-pass/ Accessed: August 19, 2024.

[13] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2021.
FP-Redemption: Studying browser fingerprinting adoption for the sake of web
security. InDetection of Intrusions andMalware, and Vulnerability Assessment: 18th
International Conference, DIMVA 2021, Virtual Event, July 14–16, 2021, Proceedings
18. Springer, 237–257.

[14] Peter Eckersley. 2010. How unique is your web browser?. In Privacy Enhancing
Technologies: 10th International Symposium, PETS 2010, Berlin, Germany, July
21-23, 2010. Proceedings 10. Springer, 1–18.

[15] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. 1388–1401.

[16] FBI. 2023. 2022 Internet Crime Report. https://www.ic3.gov/Media/PDF/
AnnualReport/2022_IC3Report.pdf.

[17] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Biggio, and Giorgio Giac-
into. 2016. Who Are You? A Statistical Approach to Measuring User Authenticity..
In NDSS, Vol. 16. 21–24.

[18] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in the
crowd: an analysis of the effectiveness of browser fingerprinting at large scale.
In Proceedings of the 2018 world wide web conference. 309–318.

[19] Google. 2024. Privacy Sandbox. https://privacysandbox.com Accessed: August
19, 2024.

[20] Hestry Humaira and Rasyidah Rasyidah. 2020. Determining The Appropriate
Cluster Number Using Elbow Method for K-Means Algorithm. In Proceedings of
the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018.

[21] Ian T Jolliffe. 2002. Principal component analysis for special types of data. Springer.
[22] Kaggle. 2024. Credit Card Fraud Detection.

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud.
[23] Soroush Karami, Faezeh Kalantari, Mehrnoosh Zaeifi, Xavier J Maso, Erik Trickel,

Panagiotis Ilia, Yan Shoshitaishvili, AdamDoupé, and Jason Polakis. 2022. Unleash
the simulacrum: shifting browser realities for robust {Extension-Fingerprinting}
prevention. In 31st USENIX Security Symposium (USENIX Security 22). 735–752.

[24] Ricardo Kawase, Francesca Diana, Mateusz Czeladka, Markus Schüler, and
Manuela Faust. 2019. Internet fraud: the case of account takeover in online
marketplace. In Proceedings of the 30th ACM Conference on Hypertext and Social
Media. 181–190.

[25] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. 2019. Morel-
lian analysis for browsers: Making web authentication stronger with canvas fin-
gerprinting. In Detection of Intrusions and Malware, and Vulnerability Assessment:
16th International Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019,
Proceedings 16. Springer, 43–66.

[26] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.
Browser fingerprinting: A survey. ACM Transactions on the Web (TWEB) 14,
2 (2020), 1–33.

[27] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 878–894.

[28] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. 2021. Fingerprinting in style: Detecting browser extensions via
injected style sheets. In 30th USENIX Security Symposium (USENIX Security 21).
2507–2524.

[29] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. 2022. Phish in sheep’s
clothing: Exploring the authentication pitfalls of browser fingerprinting. In 31st
USENIX Security Symposium (USENIX Security 22). 1651–1668.

[30] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[31] Zengrui Liu, Prakash Shrestha, and Nitesh Saxena. 2022. Gummy browsers:
targeted browser spoofing against state-of-the-art fingerprinting techniques. In
International Conference on Applied Cryptography and Network Security. Springer,
147–169.

[32] Sharon L. Lohr. 2019. Sampling: Design and Analysis. Cengage Learning.
[33] MDN. 2022. MDNWeb API. https://developer.mozilla.org/en-US/docs/Web/API.
[34] Grzergor Milka. 2018. Anatomy of account takeover. In Enigma 2018 (Enigma

2018).
[35] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas

in HTML5. Proceedings of W2SP 2012 (2012).
[36] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,

Frank Piessens, and Giovanni Vigna. 2013. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In 2013 IEEE Symposium on Secu-
rity and Privacy. IEEE, 541–555.

[37] U.S. Department of Health andHuman Services. 2024. Human Subject Regulations
Decision Charts: 2018 Requirements. https://www.hhs.gov/ohrp/regulations-
and-policy/decision-charts-2018/index.html.

[38] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. 2016. What
happens after you are pwnd: Understanding the use of leaked webmail credentials
in the wild. In Proceedings of the 2016 Internet Measurement Conference. 65–79.

[39] Pablo Picazo-Sanchez, Gerardo Schneider, and Andrei Sabelfeld. 2020. HMAC and
“Secure Preferences”: Revisiting Chromium-Based Browsers Security. In Cryp-
tology and Network Security: 19th International Conference, CANS 2020, Vienna,
Austria, December 14–16, 2020, Proceedings 19. Springer, 107–126.

[40] Radware. 2024. Detecting andMitigating Highly Distributed Sophisticated Bot At-
tacks. https://www.radware.com/blog/application-protection/2023/11/detecting-
and-mitigating-highly-distributed-sophisticated-bot-attacks.

[41] Rohan Goswami. 2023. Cybercrime marketplace Genesis Market shut by FBI, in-
ternational law enforcement. https://www.cnbc.com/2023/04/04/genesis-market-
shut-by-law-enforcement-in-cybercrime-operation.html.

[42] Iskander Sanchez-Rola, Leyla Bilge, Davide Balzarotti, Armin Buescher, and
Petros Efstathopoulos. 2023. Rods with laser beams: understanding browser
fingerprinting on phishing pages. In 32nd USENIX Security Symposium (USENIX
Security 23). 4157–4173.

[43] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2018. Clock around
the clock: Time-based device fingerprinting. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 1502–1514.

[44] Michael Schwarz, Florian Lackner, and Daniel Gruss. 2019. JavaScript Template
Attacks: Automatically Inferring Host Information for Targeted Exploits.. In
NDSS.

[45] Asuman Senol, Alisha Ukani, Dylan Cutler, and Igor Bilogrevic. 2024. The Double
Edged Sword: Identifying Authentication Pages and their Fingerprinting Behavior.
In Proceedings of the ACM on Web Conference 2024. 1690–1701.

[46] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
browser extensions via web accessible resources. In Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy. 329–336.

[47] Naoki Takei, Takamichi Saito, Ko Takasu, and Tomotaka Yamada. 2015. Web
browser fingerprinting using only cascading style sheets. In 2015 10th Interna-
tional Conference on Broadband and Wireless Computing, Communication and
Applications (BWCCA). IEEE.

[48] AdsPower Team. 2024. AdsPower. https://www.adspower.com.
[49] AmIUnique Team. 2024. AmIUnique. https://amiunique.org.
[50] AntBrowser Team. 2024. AntBrowser. https://antbrowser.pro.
[51] CheBrowser Team. 2024. CheBrowser. https://chebrowser.site.
[52] ClientJS Team. 2024. ClientJS. http://clientjs.org.
[53] ClonBrowser Team. 2024. ClonBrowser. https://www.clonbrowser.com.
[54] FingerprintJS Team. 2024. FingerprintJS. https://github.com/fingerprintjs/

fingerprintjs.
[55] GoLogin Team. 2024. GoLogin. https://gologin.com.
[56] Incogniton Team. 2024. incogniton. https://incogniton.com.
[57] OctoBrowser Team. 2024. Octo Browser. https://octobrowser.net.
[58] Sphere Team. 2024. Sphere – A Browser for Anonymity. https://www.

geeksforgeeks.org/sphere-a-browser-for-anonymity/y.
[59] VMLogin Team. 2024. VMLogin. https://www.vmlogin.us.
[60] Wappalyzer Team. 2024. Browser fingerprinting market share. https://www.

wappalyzer.com/technologies/browser-fingerprinting.
[61] Tenebris. 2024. Linken Sphere. https://ls.tenebris.cc.
[62] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik

Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, et al. 2017. Data
breaches, phishing, or malware? Understanding the risks of stolen credentials. In
Proceedings of the ACM Conference on Computer and Communications Security
(CCS).

[63] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. 2019. Everyone is different: Client-side diversification for defending
against extension fingerprinting. In 28th USENIX Security Symposium (USENIX
Security 19). 1679–1696.

[64] Dejan Varmedja, Mirjana Karanovic, Srdjan Sladojevic, Marko Arsenovic, and
Andras Anderla. 2019. Credit card fraud detection-machine learning methods. In
2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH). IEEE, 1–5.

[65] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies. In
27th USENIX Security Symposium (USENIX Security 18). 135–150.

[66] Ben Wiser. 2023. Web Environment Integrity. https://rupertbenwiser.github.io/
Web-Environment-Integrity.

[67] Shujiang Wu, Pengfei Sun, Yao Zhao, and Yinzhi Cao. 2023. Him of Many Faces:
Characterizing Billion-scale Adversarial and Benign Browser Fingerprints on
Commercial Websites.. In NDSS.

[68] Mehrnoosh Zaeifi, Faezeh Kalantari, Adam Oest, Zhibo Sun, Gail-Joon Ahn, Yan
Shoshitaishvili, Tiffany Bao, Ruoyu Wang, and Adam Doupé. 2024. Nothing Per-
sonal: Understanding the Spread and Use of Personally Identifiable Information
in the Financial Ecosystem. In Proceedings of the Fourteenth ACM Conference on
Data and Application Security and Privacy. 55–65.

https://developers.cloudflare.com/waf/tools/privacy-pass/
https://developers.cloudflare.com/waf/tools/privacy-pass/
https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf
https://privacysandbox.com
https://developer.mozilla.org/en-US/docs/Web/API
https://www.hhs.gov/ohrp/regulations-and-policy/decision-charts-2018/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/decision-charts-2018/index.html
https://www.adspower.com
https://amiunique.org
https://antbrowser.pro
https://chebrowser.site
http://clientjs.org
https://www.clonbrowser.com
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://gologin.com
https://incogniton.com
https://octobrowser.net
https://www.geeksforgeeks.org/sphere-a-browser-for-anonymity/y
https://www.geeksforgeeks.org/sphere-a-browser-for-anonymity/y
https://www.vmlogin.us
https://www.wappalyzer.com/technologies/browser-fingerprinting
https://www.wappalyzer.com/technologies/browser-fingerprinting
https://ls.tenebris.cc
https://rupertbenwiser.github.io/Web-Environment-Integrity
https://rupertbenwiser.github.io/Web-Environment-Integrity


Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

A Ethics

This work does not raise any ethical issues since we ensure that
all data collected is in accordance with FinOrg’s data collection
policy, which considers fingerprinting browsers for fraud detection
purposes as a legitimate and legal use case. It’s important to note,
as discussed in Section 6.2, that the fingerprints we collected are
only integer outputs, used exclusively for fraud detection purposes.

Furthermore, our coarse-grained fingerprints lack the granular-
ity to identify specific user browsers, thereby preserving privacy.
For instance, a sample from our dataset in March revealed that
approximately 11% of sessions in a day shared a user-agent asso-
ciated with a specific Chrome version on a Windows 10 machine,
with 96% displaying identical coarse-grained fingerprints. This pre-
cludes individual user identification. To provide additional proof,
we analyzed the anonymity sets and feature entropy in Section 7.4.
Our analysis found that only 0.3% of the fingerprints in our dataset

were unique, which is negligible compared to the 30% unique fin-
gerprints reported in previous studies [18]. This reinforces that our
approach does not enable tracking and is solely for fraud detection.

Additionally, examining the entropy of collected features (Ta-
ble 7), the most diverse collected feature was the user-agent, indi-
cating that our collected features do not provide additional infor-
mation beyond what is already exposed by the user-agent string.

Moreover, the session identifiers shared with us by FinOrg were
completely opaque and randomized, ensuring no possibility of trac-
ing them back to individual users, thereby maintaining user privacy
and data confidentiality. Importantly, no Personally Identifiable In-
formation (PII) was captured; at no time did the research involve
access to the users’ identity or their IP addresses.

To determine the necessity of IRB approval, we referred to Chart
01 from the Human Subject Regulations Decision Charts [37], titled
‘Is an Activity Human Subjects Research Covered by 45 CFR Part
46?’ Based on this chart, we concluded that our project does not
involve human subjects as defined under 45 CFR Part 46 and does
not require IRB oversight.



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Appendix-1

Here is the list of features used for training of Browser Polygraph. The deviation-based features focus on counting JavaScript properties
from the list of all MDN prototypes. These are initially filtered by standard deviation across all tested browsers during the candidate
fingerprint generation stage, and then further filtered during the data pre-processing stage due to inconsistencies in actual browser data. The
time-based features were initially derived from BrowserPrint [5]’s work, which examines the presence or absence of properties in browser
releases. However, many of these features were subsequently filtered out as they did not track browser changes after 2020.

Table 8: Features set used for training of Browser Polygraph.

Num Feature Type

1 Object.getOwnPropertyNames(Element.prototype).length deviation-based

2 Object.getOwnPropertyNames(Document.prototype).length deviation-based

3 Object.getOwnPropertyNames(HTMLElement.prototype).length deviation-based

4 Object.getOwnPropertyNames(SVGElement.prototype).length deviation-based

5 Object.getOwnPropertyNames(SVGFEBlendElement.prototype).length deviation-based

6 Object.getOwnPropertyNames(TextMetrics.prototype).length deviation-based

7 Object.getOwnPropertyNames(Range.prototype).length deviation-based

8 Object.getOwnPropertyNames(StaticRange.prototype).length deviation-based

9 Object.getOwnPropertyNames(AuthenticatorAttestationResponse.prototype).length deviation-based

10 Object.getOwnPropertyNames(HTMLVideoElement.prototype).length deviation-based

11 Object.getOwnPropertyNames(ResizeObserverEntry.prototype).length deviation-based

12 Object.getOwnPropertyNames(ShadowRoot.prototype).length deviation-based

13 Object.getOwnPropertyNames(PointerEvent.prototype).length deviation-based

14 Object.getOwnPropertyNames(IntersectionObserver.prototype).length deviation-based

15 Object.getOwnPropertyNames(CanvasRenderingContext2D.prototype).length deviation-based

16 Object.getOwnPropertyNames(CSSStyleSheet.prototype).length deviation-based

17 Object.getOwnPropertyNames(AudioContext.prototype).length deviation-based

18 Object.getOwnPropertyNames(HTMLLinkElement.prototype).length deviation-based

19 Object.getOwnPropertyNames(HTMLMediaElement.prototype).length deviation-based

20 Object.getOwnPropertyNames(WebGL2RenderingContext.prototype).length deviation-based

21 Object.getOwnPropertyNames(WebGLRenderingContext.prototype).length deviation-based

22 Object.getOwnPropertyNames(CSSRule.prototype).length deviation-based

23 Navigator.prototype.hasOwnProperty(’deviceMemory’) time-based

24 BaseAudioContext.prototype.hasOwnProperty(’currentTime’) time-based

25 HTMLVideoElement.prototype.hasOwnProperty(’webkitDisplayingFullscreen’) time-based

26 Screen.prototype.hasOwnProperty(’orientation’) time-based

27 Window.prototype.hasOwnProperty(’speechSynthesis’) time-based

28 CSSStyleDeclaration.prototype.hasOwnProperty(’getPropertyValue’) time-based



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

Appendix-2

Table 9: user-agents assigned to clusters by Browser Polygraph with a less optimal clusters’ number choice, k=6.

Cluster user-agents

0 Chrome 114, Edge 114

1 Chrome 90-96, Edge 90-96, Firefox 101-114

2 Chrome 97-113, Edge 97-113

3 Chrome 64-89, Edge 79-89

4 Chrome 59-63, Firefox 51-100

5 Edge 17,18, Firefox 46-50

Appendix-3

Here are the list of 200 features used for the Real-World Data Collection stage besides 313 features from browserprint’s code [5]:

Object.getOwnPropertyNames(Element.prototype).length
Object.getOwnPropertyNames(Document.prototype).length
Object.getOwnPropertyNames(HTMLElement.prototype).length
Object.getOwnPropertyNames(SVGElement.prototype).length
Object.getOwnPropertyNames(Navigator.prototype).length
Object.getOwnPropertyNames(RTCIceCandidate.prototype).length
Object.getOwnPropertyNames(SVGFEBlendElement.prototype).length
Object.getOwnPropertyNames(TextMetrics.prototype).length
Object.getOwnPropertyNames(Range.prototype).length
Object.getOwnPropertyNames(StaticRange.prototype).length
Object.getOwnPropertyNames(RTCRtpReceiver.prototype).length
Object.getOwnPropertyNames(RTCPeerConnection.prototype).length
Object.getOwnPropertyNames(AuthenticatorAttestationResponse.prototype).length
Object.getOwnPropertyNames(FontFace.prototype).length
Object.getOwnPropertyNames(HTMLVideoElement.prototype).length
Object.getOwnPropertyNames(ResizeObserverEntry.prototype).length
Object.getOwnPropertyNames(ShadowRoot.prototype).length
Object.getOwnPropertyNames(RTCRtpSender.prototype).length
Object.getOwnPropertyNames(PointerEvent.prototype).length
Object.getOwnPropertyNames(Blob.prototype).length
Object.getOwnPropertyNames(ServiceWorkerRegistration.prototype).length
Object.getOwnPropertyNames(MediaSession.prototype).length
Object.getOwnPropertyNames(PaymentResponse.prototype).length
Object.getOwnPropertyNames(HTMLSourceElement.prototype).length
Object.getOwnPropertyNames(Clipboard.prototype).length
Object.getOwnPropertyNames(IDBTransaction.prototype).length
Object.getOwnPropertyNames(Performance.prototype).length
Object.getOwnPropertyNames(ServiceWorkerContainer.prototype).length
Object.getOwnPropertyNames(HTMLIFrameElement.prototype).length
Object.getOwnPropertyNames(PaymentRequest.prototype).length
Object.getOwnPropertyNames(RTCRtpTransceiver.prototype).length
Object.getOwnPropertyNames(IntersectionObserver.prototype).length
Object.getOwnPropertyNames(CanvasRenderingContext2D.prototype).length
Object.getOwnPropertyNames(CSSStyleSheet.prototype).length
Object.getOwnPropertyNames(BaseAudioContext.prototype).length
Object.getOwnPropertyNames(AudioContext.prototype).length
Object.getOwnPropertyNames(HTMLLinkElement.prototype).length
Object.getOwnPropertyNames(RTCDataChannel.prototype).length
Object.getOwnPropertyNames(WritableStream.prototype).length
Object.getOwnPropertyNames(DataTransferItem.prototype).length
Object.getOwnPropertyNames(DocumentFragment.prototype).length
Object.getOwnPropertyNames(HTMLMediaElement.prototype).length



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Object.getOwnPropertyNames(StorageManager.prototype).length
Object.getOwnPropertyNames(HTMLSlotElement.prototype).length
Object.getOwnPropertyNames(Text.prototype).length
Object.getOwnPropertyNames(WebGL2RenderingContext.prototype).length
Object.getOwnPropertyNames(HTMLInputElement.prototype).length
Object.getOwnPropertyNames(WebGLRenderingContext.prototype).length
Object.getOwnPropertyNames(HTMLButtonElement.prototype).length
Object.getOwnPropertyNames(HTMLTextAreaElement.prototype).length
Object.getOwnPropertyNames(HTMLSelectElement.prototype).length
Object.getOwnPropertyNames(MediaRecorder.prototype).length
Object.getOwnPropertyNames(CountQueuingStrategy.prototype).length
Object.getOwnPropertyNames(BytelengthQueuingStrategy.prototype).length
Object.getOwnPropertyNames(PerformanceMark.prototype).length
Object.getOwnPropertyNames(PerformanceMeasure.prototype).length
Object.getOwnPropertyNames(HTMLImageElement.prototype).length
Object.getOwnPropertyNames(SpeechSynthesisEvent.prototype).length
Object.getOwnPropertyNames(HTMLFormElement.prototype).length
Object.getOwnPropertyNames(IDBCursor.prototype).length
Object.getOwnPropertyNames(HTMLTemplateElement.prototype).length
Object.getOwnPropertyNames(CSSRule.prototype).length
Object.getOwnPropertyNames(Location.prototype).length
Object.getOwnPropertyNames(PaymentAddress.prototype).length
Object.getOwnPropertyNames(IntersectionObserverEntry.prototype).length
Object.getOwnPropertyNames(TextEncoder.prototype).length
Object.getOwnPropertyNames(ImageData.prototype).length
Object.getOwnPropertyNames(HTMLMetaElement.prototype).length
Object.getOwnPropertyNames(Crypto.prototype).length
Object.getOwnPropertyNames(GamepadButton.prototype).length
Object.getOwnPropertyNames(DOMMatrixReadOnly.prototype).length
Object.getOwnPropertyNames(MediaKeys.prototype).length
Object.getOwnPropertyNames(MessageEvent.prototype).length
Object.getOwnPropertyNames(IDBFactory.prototype).length
Object.getOwnPropertyNames(MediaDevices.prototype).length
Object.getOwnPropertyNames(OfflineAudioContext.prototype).length
Object.getOwnPropertyNames(URL.prototype).length
Object.getOwnPropertyNames(ScriptProcessorNode.prototype).length
Object.getOwnPropertyNames(SVGAnimatedNumberList.prototype).length
Object.getOwnPropertyNames(ServiceWorker.prototype).length
Object.getOwnPropertyNames(SensorErrorEvent.prototype).length
Object.getOwnPropertyNames(SVGAnimatedPreserveAspectRatio.prototype).length
Object.getOwnPropertyNames(Sensor.prototype).length
Object.getOwnPropertyNames(SVGAnimatedRect.prototype).length
Object.getOwnPropertyNames(SVGAnimatedString.prototype).length
Object.getOwnPropertyNames(Selection.prototype).length
Object.getOwnPropertyNames(SecurityPolicyViolationEvent.prototype).length
Object.getOwnPropertyNames(XPathExpression.prototype).length
Object.getOwnPropertyNames(SVGAnimatedNumber.prototype).length
Object.getOwnPropertyNames(SVGAnimatedTransformList.prototype).length
Object.getOwnPropertyNames(Screen.prototype).length
Object.getOwnPropertyNames(RTCTrackEvent.prototype).length
Object.getOwnPropertyNames(SVGAnimateElement.prototype).length
Object.getOwnPropertyNames(SVGAnimateMotionElement.prototype).length
Object.getOwnPropertyNames(RTCStatsReport.prototype).length
Object.getOwnPropertyNames(RTCSessionDescription.prototype).length
Object.getOwnPropertyNames(SVGAnimateTransformElement.prototype).length
Object.getOwnPropertyNames(ScreenOrientation.prototype).length
Object.getOwnPropertyNames(SVGAnimatedlengthList.prototype).length
Object.getOwnPropertyNames(XPathResult.prototype).length
Object.getOwnPropertyNames(SVGAngle.prototype).length
Object.getOwnPropertyNames(SVGAElement.prototype).length
Object.getOwnPropertyNames(SubtleCrypto.prototype).length
Object.getOwnPropertyNames(SVGAnimatedAngle.prototype).length



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

Object.getOwnPropertyNames(StyleSheetList.prototype).length
Object.getOwnPropertyNames(StyleSheet.prototype).length
Object.getOwnPropertyNames(StylePropertyMapReadOnly.prototype).length
Object.getOwnPropertyNames(StylePropertyMap.prototype).length
Object.getOwnPropertyNames(XPathEvaluator.prototype).length
Object.getOwnPropertyNames(SVGAnimatedBoolean.prototype).length
Object.getOwnPropertyNames(SharedWorker.prototype).length
Object.getOwnPropertyNames(StorageEvent.prototype).length
Object.getOwnPropertyNames(Storage.prototype).length
Object.getOwnPropertyNames(StereoPannerNode.prototype).length
Object.getOwnPropertyNames(SVGAnimatedEnumeration.prototype).length
Object.getOwnPropertyNames(SpeechSynthesisUtterance.prototype).length
Object.getOwnPropertyNames(SVGAnimatedInteger.prototype).length
Object.getOwnPropertyNames(SVGAnimatedlength.prototype).length
Object.getOwnPropertyNames(SpeechSynthesisErrorEvent.prototype).length
Object.getOwnPropertyNames(SourceBufferList.prototype).length
Object.getOwnPropertyNames(SourceBuffer.prototype).length
Object.getOwnPropertyNames(WebGLFramebuffer.prototype).length
Object.getOwnPropertyNames(PresentationConnection.prototype).length
Object.getOwnPropertyNames(Plugin.prototype).length
Object.getOwnPropertyNames(PluginArray.prototype).length
Object.getOwnPropertyNames(PopStateEvent.prototype).length
Object.getOwnPropertyNames(Presentation.prototype).length
Object.getOwnPropertyNames(PresentationAvailability.prototype).length
Object.getOwnPropertyNames(PresentationConnectionAvailableEvent.prototype).length
Object.getOwnPropertyNames(PresentationConnectionCloseEvent.prototype).length
Object.getOwnPropertyNames(PresentationConnectionList.prototype).length
Object.getOwnPropertyNames(PresentationReceiver.prototype).length
Object.getOwnPropertyNames(PresentationRequest.prototype).length
Object.getOwnPropertyNames(ProcessingInstruction.prototype).length
Object.getOwnPropertyNames(PictureInPictureWindow.prototype).length
Object.getOwnPropertyNames(PermissionStatus.prototype).length
Object.getOwnPropertyNames(PromiseRejectionEvent.prototype).length
Object.getOwnPropertyNames(PerformanceNavigationTiming.prototype).length
Object.getOwnPropertyNames(PerformanceObserver.prototype).length
Object.getOwnPropertyNames(PerformanceObserverEntryList.prototype).length
Object.getOwnPropertyNames(PerformancePaintTiming.prototype).length
Object.getOwnPropertyNames(Permissions.prototype).length
Object.getOwnPropertyNames(PerformanceResourceTiming.prototype).length
Object.getOwnPropertyNames(PerformanceServerTiming.prototype).length
Object.getOwnPropertyNames(PerformanceTiming.prototype).length
Object.getOwnPropertyNames(PeriodicWave.prototype).length
Object.getOwnPropertyNames(ProgressEvent.prototype).length
Object.getOwnPropertyNames(PublicKeyCredential.prototype).length
Object.getOwnPropertyNames(RTCDTMFToneChangeEvent.prototype).length
Object.getOwnPropertyNames(RTCCertificate.prototype).length
Object.getOwnPropertyNames(RTCDataChannelEvent.prototype).length
Object.getOwnPropertyNames(RTCDTMFSender.prototype).length
Object.getOwnPropertyNames(RTCPeerConnectionIceEvent.prototype).length
Object.getOwnPropertyNames(Response.prototype).length
Object.getOwnPropertyNames(PushManager.prototype).length
Object.getOwnPropertyNames(PushSubscription.prototype).length
Object.getOwnPropertyNames(PushSubscriptionOptions.prototype).length
Object.getOwnPropertyNames(RadioNodeList.prototype).length
Object.getOwnPropertyNames(ReadableStream.prototype).length
Object.getOwnPropertyNames(ResizeObserver.prototype).length
Object.getOwnPropertyNames(RelativeOrientationSensor.prototype).length
Object.getOwnPropertyNames(RemotePlayback.prototype).length
Object.getOwnPropertyNames(ReportingObserver.prototype).length
Object.getOwnPropertyNames(Request.prototype).length
Object.getOwnPropertyNames(SVGAnimationElement.prototype).length
Object.getOwnPropertyNames(XMLHttpRequestEventTarget.prototype).length



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Object.getOwnPropertyNames(SVGCircleElement.prototype).length
Object.getOwnPropertyNames(TreeWalker.prototype).length
Object.getOwnPropertyNames(WebGLTexture.prototype).length
Object.getOwnPropertyNames(TextDecoderStream.prototype).length
Object.getOwnPropertyNames(TextEncoderStream.prototype).length
Object.getOwnPropertyNames(WebGLSync.prototype).length
Object.getOwnPropertyNames(TextTrack.prototype).length
Object.getOwnPropertyNames(TextTrackCue.prototype).length
Object.getOwnPropertyNames(TextTrackCueList.prototype).length
Object.getOwnPropertyNames(WebGLShaderPrecisionFormat.prototype).length
Object.getOwnPropertyNames(TextTrackList.prototype).length
Object.getOwnPropertyNames(TimeRanges.prototype).length
Object.getOwnPropertyNames(Touch.prototype).length
Object.getOwnPropertyNames(TouchEvent.prototype).length
Object.getOwnPropertyNames(TouchList.prototype).length
Object.getOwnPropertyNames(TrackEvent.prototype).length
Object.getOwnPropertyNames(TransformStream.prototype).length
Object.getOwnPropertyNames(WebGLTransformFeedback.prototype).length
Object.getOwnPropertyNames(TextDecoder.prototype).length
Object.getOwnPropertyNames(WebGLUniformLocation.prototype).length
Object.getOwnPropertyNames(SVGTitleElement.prototype).length
Object.getOwnPropertyNames(WebGLVertexArrayObject.prototype).length
Object.getOwnPropertyNames(SVGSymbolElement.prototype).length
Object.getOwnPropertyNames(SVGTextContentElement.prototype).length
Object.getOwnPropertyNames(SVGTextElement.prototype).length
Object.getOwnPropertyNames(SVGTextPathElement.prototype).length
Object.getOwnPropertyNames(SVGTextPositioningElement.prototype).length
Object.getOwnPropertyNames(SVGTransform.prototype).length
Object.getOwnPropertyNames(TaskAttributionTiming.prototype).length
Object.getOwnPropertyNames(SVGTransformList.prototype).length
Object.getOwnPropertyNames(SVGTSpanElement.prototype).length
Object.getOwnPropertyNames(SVGUnitTypes.prototype).length
Object.getOwnPropertyNames(SVGUseElement.prototype).length
Object.getOwnPropertyNames(SVGViewElement.prototype).length



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

Appendix-4

To conduct an internal performance analysis on our trained model, it is essential to first define our accuracy metric. As mentioned in this paper, we are using a
semi-supervised learning method (i.e. clustering). Our defined accuracy metric is how accurately our clusters represent the user-agent instances. For this
evaluation, we consider a cluster assignment to be accurate if all instances of the same user-agent are mapped to the same cluster number (i.e., the one with
the majority of data points for that user-agent string).

Model accuracy =
Number of user-agents mapped to their corresponding clusters

Total number of user-agents
(1)

For example, if the majority of the data points with the user-agent of Chrome110 are assigned to cluster 0, we consider cluster 0 as the corresponding
cluster for Chrome110. Any data point with the user-agent of Chrome110 that is assigned to a different cluster number is considered misclustered. Thus,
when discussing model accuracy in the context of the following sensitivity analysis, we refer to the percentage of data in the dataset that is correctly assigned
to the appropriate cluster numbers (Formula 1).

For the Browser Polygraph model trained in this paper, as discussed in Section 6.4, we have determined that 28 features, 7 PCA components, and 11
clusters (k=11) are optimal for our fraud detection objectives. With these parameters, our model achieves a 99.6% accuracy in correctly assigning user-agent
instances to clusters. We will demonstrate how changes to the number of clusters, PCA components, and features impact the accuracy of the trained model in
Browser Polygraph.
• Number of clusters: to evaluate the impact of varying the number of clusters on model accuracy, we trained our model using different numbers of

clusters (5, 7, 9, 11, 13, 15, 17, and 19) while maintaining a consistent feature set of 28 attributes and 7 principal components. As shown in Table 10, model
accuracy generally decreases as the number of clusters increases. With a higher number of clusters, browser instances with close versions are more likely to
be misclustered. This occurs because increasing the number of clusters separates instances with closely aligned feature values, whereby assigning them to
distinct clusters.

An important consideration arises: why not use fewer clusters (i.e., fewer than k=11)? In practice, selecting too few clusters provides attackers with greater
flexibility to manipulate browser attributes, enabling them to evade detection by Browser Polygraph. From a fraud detection standpoint, while using a larger
number of clusters might detect more potential fraud cases, it is essential not to compromise accuracy, as this can lead to an increase in false positives, i.e.
incorrectly identifying a non-fraudulent browser instance as a fraud case. As illustrated in Table 10, there is a noticeable decrease in accuracy (0.2%) from k=11
to k=13, indicating that k=11 is an optimal choice for balancing cluster count and model accuracy.
• Number of PCA components: here, we evaluate the influence of the number of PCA components on our model’s accuracy, while keeping the number of

features at 28. Table 11 presents our analysis for PCA components equal to 6 and greater than 6. Each experiment is followed by a similar analysis as detailed in
Section 6.4 to determine the optimal number of clusters. We observe an increase in accuracy from PCA=6 to PCA=7, indicating that the additional component
provides valuable information for accurately clustering browser instances. However, adding more components beyond 7 leads to a decrease in accuracy due to
the introduction of noise. This observation can be attributed to the “curse of dimensionality,” a phenomenon that occurs when too many features—particularly
irrelevant or noisy ones—are added to a model. In high-dimensional spaces, data points become more sparse, leading to reduced clustering accuracy. Therefore,
7 number of PCA components lead to the most accurate clustering.
• Number of features: here, we explore the influence of selecting more than 28 features on the training process. We analyzed all 513 features from our

dataset of 205k rows. The values were sorted based on standard deviation (excluding those deemed improper in Section 6.3), and at each step, we selected 4
additional features from those with higher standard deviations. Out of the 4 features added in each step, two were present across the releases of Chrome, Edge,
and Firefox browsers, highlighting differences between browser versions. Meanwhile, the other two features, which are absent in Firefox, were selected
to emphasize the differences between Firefox and Chrome/Edge browsers. For each step, we extracted the optimal number of PCA components (similar to
Figure 2) based on the analysis in Section 6.4 and also determined the optimal number of clusters according to the logic in Section 6.4, by observing the
highest relative WSS. The list of added features and the results of our analysis for each step are shown in Table 12. Moving from 28 to 32 features does not
affect the number of PCA components or clusters; however, it decreases model accuracy. We believe this accuracy reduction is due to the introduction of noise
and the curse of dimensionality from the added features. However, increasing the number of features in the other steps (i.e., steps with 36 and 42 features)
does not impact the number of PCA components, but it increases the number of optimal clusters. This is because the added features introduce additional
dimensions to our data points, potentially leading to the formation of more clusters, which, in turn, reduces model accuracy. To summarize, the analysis in
Table 12 shows a decrease in accuracy as the number of features and clusters increases. For instance, increasing the number of features from 28 to 32 causes

Table 10: Sensitivity analysis for increased number of clusters with 28 features and 7 PCA components.

Number of clusters 5 7 9 11 13 15 17 19

Model accuracy 99.88% 99.69% 99.58% 99.60% 99.40% 99.31% 99.29% 99.26%

Table 11: Sensitivity analysis for different number of PCA components with 28 features.

Number of PCA components 6 7 8 9 10

Optimal number of clusters 11 11 11 11 11

Model accuracy 99.54% 99.60% 99.46% 99.46% 99.46%



IMC ’24, November 4–6, 2024, Madrid, Spain Faezeh Kalantari et al.

Table 12: Sensitivity analysis for different number of features.

Features Names of added features PCA k Model accuracy

28 Appendix-2 7 11 99.60%

32

Object.getOwnPropertyNames(HTMLIFrameElement.prototype).length
Object.getOwnPropertyNames(SVGAElement.prototype).length
Object.getOwnPropertyNames(RemotePlayback.prototype).length
Object.getOwnPropertyNames(StylePropertyMapReadOnly.prototype).length

7 11 99.52%

36

Object.getOwnPropertyNames(Screen.prototype).length
Object.getOwnPropertyNames(Request.prototype).length
Object.getOwnPropertyNames(TouchEvent.prototype).length
Object.getOwnPropertyNames(TaskAttributionTiming.prototype).length

7 12 99.41%

42

Object.getOwnPropertyNames(PictureInPictureWindow.prototype).length
Object.getOwnPropertyNames(ReportingObserver.prototype).length
Object.getOwnPropertyNames(HTMLTemplateElement.prototype).length
Object.getOwnPropertyNames(MediaSession.prototype).length

7 14 99.41%

the accuracy to drop by 0.08%, which, for a dataset of 200k rows, could result in up to 160 additional false positives in the fraud detection system (a 13%
increase compared to a model with 28 features).

The three evaluations above clearly demonstrate that our chosen parameters in Browser Polygraph (28 features, 7 PCA components, and k=11 clusters)
lead to optimal accuracy in clustering browser instances.



Browser Polygraph: Efficient Deployment of Coarse-Grained Browser Fingerprints for Web-Scale Detection of Fraud Browsers IMC ’24, November 4–6, 2024, Madrid, Spain

Appendix-5

In this section, a performance comparison between Browser Polygraph and fine-grained fingerprinting techniques is provided. Synthetic data is being used
to compare Browser Polygraph coarse-grained fingerprints and two of the fine-grained fingerprinting techniques (FingerprintJS and ClientJS).

Before diving into the experiments conducted, we would like to reiterate that fine-grained fingerprinting techniques were originally designed for user
tracking by collecting detailed information about a user’s OS, browser, configuration, and underlying hardware. These techniques typically generate a JSON
object containing these details, which is hashed to create a user identifier for tracking purposes. However, to provide a testbed for comparison between
fine-grained techniques and our proposed method, we have to further process the JSON object generated by the fine-grained fingerprinting data to extract
relevant information that can be used as the inputs of a clustering method.

In this synthetic setup, we used BrowserStack to launch Chrome, Edge, and Firefox browser instances on Windows 10 and 11. The synthetic data are
collected from (1) our developed website for Browser Polygraph, (2) FingerprintJS website, and (3) a custom website for ClientJS. In this experiment, we
extracted 430 fingerprints from Browser Polygraph, 382 fingerprints from FingerprintJS, and 391 fingerprints from ClientJS along with their corresponding
user-agent strings. To prepare the FingerprintJS and ClientJS data for clustering, we had to interpret the fingerprints provided in the JSON format. To do so,
for nested objects within the JSON, we flattened the data by creating separate columns for each key. Then, we converted all values into numerical formats:
numeric values were left unchanged, boolean values were mapped to 0 and 1, and strings were encoded as numerical categories. Any missing values were
assigned a default value of -1. Subsequently, columns with unique values across all data points were excluded. Additionally, for ClientJS, since some features
were directly extracted from the user-agent string, we excluded those features as well. All other features were retained for clustering. Ultimately, 268 features
were extracted for clustering FingerprintJS data while only 7 useful features from ClientJS were obtained, as ClientJS does not provide many descriptive
browser features. We also used 28 features from Browser Polygraph as discussed in Section 6.4.

To perform clustering, we followed features scaling, PCA components selection, and cluster numbers selection as described in Section 6.4. Details and
results of clustering for these three datasets are shown in Table 13. As can be seen, clustering model in Browser Polygraph achieved 100% accuracy as it did
not miscluster any browser instance. However, FingerprintJS had 99.21% model accuracy and ClientJS had model accuracy of 93.63% which falls behind the
other two techniques. The results show that the coarse-grained features of Browser Polygraph outperform fine-grained techniques in clustering. That
is because the coarse-grained features of Browser Polygraph provide broad insights into the behavior and attributes of browsers. In fact, broad features
offer a more comprehensive view of the data, aiding in effectively grouping similar browsers. This causes the clustering based on coarse-grained features to
outperform clustering that relies on fine-grained fingerprinting features, which collect detailed and individualistic user tracking information.

Table 13: Comparison of clustering performance between Browser Polygraph and fine-grained fingerprinting techniques

using synthetic data generated by BrowserStack across Windows 10 and Windows 11 (for Chrome, Edge, and Firefox).

Technique Size of dataset Features PCA k Model accuracy

Browser Polygraph 430 28 13 14 100%

FingerprintJS 382 268 55 16 99.21%

ClientJS 391 7 2 5 93.60%

Similar to Windows 10 and 11 as mentioned above, we repeated the synthetic experiment to collect the data for Browser Polygraph, FingerprintJS, and
ClientJS on macOS Sequoia and macOS Sonoma. The results are shown in Table 14. As can be seen, the performance of clustering for the three methods on
macOS is similar to the performances observed for Windows.

Table 14: Comparison of clustering performance between Browser Polygraph and fine-grained fingerprinting techniques

using synthetic data generated by BrowserStack across macOS Sequoia and macOS Sonoma (for Chrome, Edge, and Firefox).

Technique Size of dataset Features PCA k Model accuracy

Browser Polygraph 320 28 11 14 100%

FingerprintJS 325 589 36 9 99.38%

ClientJS 327 4 2 15 85.93%

The analysis in this section highlights that the explored fine-grained fingerprinting techniques, in their current form and without additional preprocessing,
may not be well-suited for clustering purposes.


	Abstract
	1 Introduction
	2 Background
	2.1 Browser Fingerprinting
	2.2 Fraud Browsers
	2.3 Fraud Browsers' Behavior

	3 Web-Scale Fingerprinting Requirements
	4 Threat Model
	5 Overview
	6 Design
	6.1 Candidate Fingerprint Generation
	6.2 Real-World Data Collection
	6.3 Data Pre-Processing
	6.4 Training of Machine-Learning Model
	6.5 Fraud Detection
	6.6 Drift Detection

	7 Evaluation
	7.1 Real-world Experiment
	7.2 Fraud Browsers' Detection
	7.3 Drift Analysis
	7.4 Privacy Analysis
	7.5 Performance Analysis

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Ethics

